
22nd IEEE International Conference on 
Emerging Technologies and Factory Automation

Vulnerability
Analysis

Fault Tolerance
Mechanisms

Fault Models

FT-enhanced
System Models

Fault Injection
Techniques

Dependability
Quantifier

&
Analyzer

Model Patched
with Suitable

Fault Tolerance
Mechanism

Code 
Generation

Original
System Models

Ap
pl

ie
d 

to
De

riv
e

Guide the 
selection of

Drive the
process of

Code
transf.

Inject fault by code 
transformation

By
Simulation Satisfied

Fa
ile

dRe-selection

Original
System Models

FT-enhanced
System Models

Model Patched
with Suitable

Fault Tolerance
Mechanism

Fault category
Four categories of faults related to CPS have been
identified, and the quality used to distinguish one
type of fault from another is mostly the entity it
affects rather than other attributes—for instance, the
fault being transient or permanent.
v Global state: shared state information are

typically held in a set of global variables, such as
memory-mapped I/O ports and inter-process
communication channels. By corrupting global
objects, we can model spontaneous output
actuations and communication failures.

v Activation arguments: model faults affecting
local execution of one or more process instances
at the interface level by corrupting its in or out
arguments. The introspection mechanism
provided by CPAL can be used to target a
particular process instance.

v Local instance variables: model faults inner to a
process instance, with a per-activation lifespan or
persistent across different activations of the same
process instance. No direct impact on other
processes in the system.

v Control flow disruption: CPAL processes are
implemented as well-structured, hierarchical FSM.
State transition conditions are honored prior to
the execution of any state code. Faults injected
before the evaluation of transition conditions may
lead the affected process instance to immediately
reach a faulty state upon activation.

CPAL elementary execution step

Motivation
Model-Driven Engineering (MDE) and Domain-
Specific Languages (DSL) have been widely
acknowledged as two key technologies to meet the
software productivity challenge and develop trust-
worthy systems, in particular for Cyber Physical
Systems (CPS).
v CPS are subject to dependability constraints.
v Fault injection is an effective technique to assess

the dependability of a system. Fault injection can
be implemented either in hardware (HIFI) or
software (SWIFI).

v However, it is time consuming and requires
extensive know-how to implement software fault
injection correctly and to determine the
verification coverage of an experiment

v Instead, software patterns are able to capture
important practice in a form that makes the
practice accessible. When combined with MDE, it
allows to detect errors in the early design phase.

Objectives
v Propose a set of software patterns that

implement fault injection with modeling languages
or language extensions, such as StateFlow, CPAL
or Mbeddr that natively support Finite State
Machines (FSMs).

v Seamlessly integrate the verification activity by
means of fault injection and simulation within the
design flow and to fully, or partially automate it.

The Cyber Physical Action Language
v A representative domain-specific language for

embedded systems designed for MDE.
v Offers high-level abstractions to express domain-

specific properties or patterns of behaviors well
suited to embedded systems with timing and
dependability constraints, and for CPS at large.

v Verification in CPAL can be achieved by means of
schedulability analysis, timing accurate simulation,
and runtime observation.

v It is not only a modelling and design language but
also an implementation language as CPAL
models can be executed directly on the target
platforms with a real-time interpretation engine.

Nicolas Navet, Ivan Cibrario Bertolotti, and Tingting Hu

Software Patterns for Fault Injection in 
CPS Engineering 

Software Patterns for Fault Injection
Software patterns aim to capture structures, ideas or
“key techniques known to expert practitioners”, and
ultimately solving recurring problems.
v External process(es): one or more processes are

dedicated to fault injection. In the latter case,
associate a separate injector process for each
target process
+ Keep a clean boundary between the normal

behavior of a system and its fault profile.
- Restricted flexibility as it offers limited access

to process inner state and hence exhibits
coarse injection granularity

- Overhead could be significant, in terms of
injector activation frequency or increased
number of processes in the system.

v Pre/post conditions: CPAL supports to specify
code common to different states of a process by
means of the common{} and finally{} blocks,
which are executed before and after the state
code respectively. They can be adopted for fault
injection as well.
+ Finer granularity as instance-specific fault

injection is possible and allow access to both
activation arguments and local variables

+ Lower overhead because injection code run
only when processes are activated

- Limited impact on control flow
v Annotation-based: leverage existing annotation

mechanism provided in CPAL for fault injection. It
can be specified either at the process or instance
level for non-functional properties
+ Clean separation of concern
+ Medium granularity of fault injection
+ Low overhead as well since fault injection code

runs on demand
- Effective for global state and control flow, but

not suitable for activation arguments and local
instance variables.

Further Development
Extend the software patterns to support injection of
timing faults, another type of faults that jeopardizes
the system correctness. This step will be continued
with automatic code generation for fault injection.

processdef P (params) {
common {
code

}

stateWarning {
code

}
on (cond) {code} to Alarm_Mode;
after (time) if (cond) to Normal_Mode;

finally {
code

}
}

process P: inst [period, offset][cond] (args);

@cpal: time: inst {
annotation code

}

Activation 
Condition Annotation code

Transition 
condition?

Transition code

Move to new state

common code

State code

finally code

Continuation?

True

True

False

False

True

Sc
he

du
le

r

Pr
oc

es
s

User-written or system code left untouched

Locations suitable for fault injection

False

Global
state

Act.
args

Local
varis.

Control
flow

External
process(es) ✓ ✓

Pre/post
conditions ✓ ✓ ✓

Annotation
-based ✓ ✓

Analysis Fault Tolerance
Mechanisms

Fault Models

FT-enhanced
System Models

Fault Injection
Techniques

Dependability
Quantifier

&
Analyzer

Model Patched
with Suitable

Fault Tolerance
Mechanism

Code 
Generation

Original
System Models

Ap
pl

ie
d 

to
De

riv
e

Guide the 
selection of

Drive the
process of

Code
transf.

Inject fault by code 
transformation

By
Simulation Satisfied

Fa
ile

dRe-selection

Original
System Models

FT-enhanced
System Models

Model Patched
with Suitable

Fault Tolerance
Mechanism


