A Model-Based Development Environment for
Rapid-Prototyping of Latency-Sensitive Automotive
Control Software

Sakthivel Manikandan Sundharam
FSTC/LASSY
University of Luxembourg
L-1359 Luxembourg
sakthivel.sundharam @uni.lu

Sebastian Altmeyer
CSA Group
University of Amsterdam
1098XH Amsterdam NL
altmeyer @uva.nl

Abstract—The innovation in the field of automotive embedded
systems has been increasingly relying on software-implemented
functions. The control laws of these functions typically assume
deterministic sampling rates and constant delays from input to
output. However, on the target processors, the execution times
of the software will depend on many factors such as the amount
of interferences from other tasks, resulting in varying delays
from sensing to actuating. Three approaches supported by tools,
namely TrueTime, T-Res, and SimEvents, have been developed
to facilitate the evaluation of how timing latencies affect control
performance. However, these approaches support the simulation
of control algorithms, but not their actual implementation. In
this paper, we present a model interpretation engine running
in a co-simulation environment to study control performances
while considering the run-time delays in to account. Introspection
features natively available facilitate the implementation of self-
adaptive and fault-tolerance strategies to mitigate and compen-
sate the run-time latencies. A DC servo controller is used as a
supporting example to illustrate our approach. Experiments on
controller tasks with injected delays show that our approach is
on par with the existing techniques with respect to simulation.
We then discuss the main benefits of our development approach
that are the support for rapid-prototyping and the re-use of
the simulation model at run-time, resulting in productivity and
quality gains.

Keywords- Model-Based Development; Control software; Con-
troller model; Task release jitters; Varying execution-times; Co-
simulation; Real-time scheduling; Control system performance.

1. INTRODUCTION

Digital controllers are interfaced with sensors and actuators.
They are real-time systems since they require inputs and
outputs to occur at the right points in time. In automotive
applications, for instance, digital controllers control engines,
brakes, suspensions, airbags, etc., that are referred to as
“plants”. The plant is in the physical world and physical

978-1-5090- 2541-1/16/$31.00 © 2016 IEEE

Lionel Havet
RealTime-at-Work (RTaW)
615, rue du Jardin Botanique
54600 Villers-les-Nancy France
lionel.havet@realtimeatwork.com

Nicolas Navet
FSTC/LASSY
University of Luxembourg
L-1359 Luxembourg
nicolas.navet@uni.lu

quantities are sensed by sensors interfaced to Analog to Digital
Converters (ADC). An ADC has two steps, namely signal
acquisition and sampling. On the other side, digital controllers
with Digital to Analog Converters (DAC) are connected to
actuators to control the plant. The real-time computing system
is implemented with control algorithms as software functions
i) to capture the current (reference) state of the plant using
sensors, ii) to compare against the reference or the desired
state iii) to control the actuators to reach the desired state of
the plant.

The continuous-time signals from the sensors are periodi-
cally sampled, each sampled set of data is then processed by
the real-time control functions. If the processing is not fast
enough with respect to the sampling rate, then some samples
of data will be lost and the frequency of the control algorithm
cannot be respected. In practice, due to for instance varying
task execution times and preemption delays, the input to output
latencies will vary over time. These delays will directly impact
the quality of the control functions, in the worst-case, possibly
jeopardizing the safety of the system. Hence, it is important
to consider these delays during the design phase of the
control software. To achieve this, techniques and supporting
tools based on simulated models have been developed. To
the best of our knowledge, none of them however support
the actual implementation, and software development work is
required later in the development process with the risk that
the developed software is not identical to the models.

This motivates the contributions of the paper: i) A
model-interpretation based runtime environment, called Cyber-
Physical Action Language (CPAL) [6l], which provides a
generic controller simulation engine. Figure [I] is an inverted
pendulum control simulation using the CPAL control library
in the Matlab/Simulink (MLSL) environment that can execute

any controllers written in CPAL. ii) A case-study servo control
mechanism is developed to explain our co-simulation devel-
opment approach. iii) We compare our synthesis approach to
existing simulation-only approaches. As a result of this mod-
eling approach integrating both functional and timing-related
non-functional concerns, system designers achieve reduced
development life cycle time.

CPAL Control Library
ICop: righté(':) 2016 RTaW & LASSY of Uni.lu
a{)out AL @ www.designcps.com

kp_in
m force_oy
n ki in Pendulum Angle
. . p_out N i—# Force
[20] kdin controller_wditter.ast ‘Add4 . | CartPosition——'S°°P®
filterGain_in i ou H
100 - Simscape
angle_in

d_oup

ITT_‘—v reference_in
reference CPAL CONTROLLER

Controller model in CPAL

i Plant model in Simulink

Fig. 1. A controller model for an inverted pendulum integrated within
the Simulink Environment. The CPAL control library is used to design the
controller model, input and output control data are visible in the design
window and can be changed without the need to access CPAL model. The ast
file format is the binary equivalent form of the source-code of the controller
model.

The rest of the paper is organized as follows: Section II
provides a survey of the state of the art practices. Then, Section
IIT describes our co-simulation approach, where the controller
model is designed in CPAL and the plant model is designed
in Matlab/Simulink (MLSL). In Section IV, we present an
automotive servo controller as the use-case, implemented in
CPAL and running in the Simulink environment. In Section
V, we compare our model-based co-simulation timing analysis
against existing approaches.

II. STATE-OF-THE-ART PRACTICES FOR CO-SIMULATION OF CONTROL
AND REAL-TIME ASPECTS

Powerful Model-Based Development (MBD) tools such as
MATLAB/Simulink (MLSL) and ASCET/MD are available
for the design and development of control systems. On the
other hand, there are dedicated tools such as MAST and
PyCPA for analyzing and configuring real-time scheduling
algorithms. Three approaches with associated tools that are
presented hereafter go in the direction of a combined approach,
i.e. to support control system design considering the influence
of scheduling strategies.

SimEvents: MATLAB/Simulink [1]] is a multi-domain
industry standard for the design of control systems. Simulink
Control Design supports the design and analysis of control
systems. SimEvents is a discrete-event simulator that can
be used as blocks in Simulink [2]] to perform system-level
simulation. It provides options to create tasks, and is able
to inject network and scheduling delays with the support of
the basic scheduling policies FIFO, LIFO and fixed priority
scheduling. Other policies like EDF are left to the user to
program. To the best of our knowledge, a significant drawback
of MLSL SimEvents is that one cannot generate code from
the system model consisting of SimEvents blocks. Hence, the

actual realization of the controller model using SimEvents is
not feasible. SimEvents is meant to model various applications
where models are driven by events, starting from operation
research and manufacturing processes to real-time systems.
Because of this generality, it does not provide all domain-
specific concepts needed for real-time systems like those
available in TrueTime and T-Res.

TrueTime: The MATLAB/Simulink-based tool [3] en-
ables the simulation of the temporal behavior of controller
tasks executed on a multitasking real-time kernel. In TrueTime,
it is possible to evaluate the performance of control loops
subject to the latencies of the implementation. TrueTime offers
a configurable kernel block, network blocks (CAN, Ethernet,
etc.), protocol-independent send and receive blocks and a
battery block. These blocks are Simulink S-functions written
in C++. TrueTime is an event-based simulation using zero-
crossing functions. Tasks are used to model the execution
of user code. The release of task instances (jobs) is either
periodic or aperiodic. For periodic tasks, the jobs are created
by an internal periodic timer. Aperiodic tasks can be created
in response to external trigger interrupts or network interrupts.
The task code is written as code segments in a Matlab script
or in C++. It models a number of code statements that are
executed sequentially. All statements in a segment are executed
sequentially, non-preemptively, and with a simulation time that
can chosen by the developer through an annotation.

T-Res: This recent tool [S] is also developed using a
set of custom Simulink blocks created for the purpose of 1)
simulating timing delays depending on the code execution,
scheduling of tasks, and communication latencies, and ii)
verifying their impact on the performance of control software.
T-Res is inspired from TrueTime and provides a more modular
approach to design the controller model enabling to define the
controller code apart from the model of the task.

Besides these three tools introduced previously, the other
tools developed in the past are in general, specialized to a
certain aspect of the co-design problem. For example, Jitter-
bug [3]] supports statistical control-performance analysis for a
certain class of control systems. Also, these tools and methods
focus only on the analysis and simulation level. They help the
designer only with the study of system performance under the
effects of timing delays, but not the system development. The
system designer, then takes these analysis results into account
to develop the actual embedded control algorithms in the next
steps. This increases the possibility of distortions between the
simulation model and the implementation.

In this paper, we propose a model-interpretation based
runtime environment which can be used in a co-simulation
environment to analyze the effects of delays on the perfor-
mance of the control system, with the advantage that the
controller model used in the simulation can be executed on
the target hardware. This way, we eliminate the gaps between
the simulation models and the executables. In the next section,
we explain our co-design approach.

2016 Sixth International Symposium on Embedded Computing and System Design (ISED)

III. Co-smmuLatioN oF CPAL anp MLSL

CPAL is an embedded-system specific language designed
jointly by our research group at the University of Luxem-
bourg and the company RealTime-at-Work. CPAL is also a
design-exploration platform to develop Cyber Physical Sys-
tems (CPS). It supports a Model-Driven Development (MDD)
approach to model, simulate and verify systems.

CPAL can be used as a stand-alone simulation environment
for CPS under development [4] or it can also be integrated
with other simulation environments like MATLAB/Simulink
(MLSL). The CPAL documentation, a graphical editor and
the execution engine for Windows, Linux and Raspberry
Pi platforms are available at http://www.designcps.com. The
CPAL control library, needed to execute controller models
written in CPAL in MLSL, and the models used in this
paper are available at http://www.designcps.com/wp-content/
uploads/cpal-simulink-control-library.zip.

In a control-system simulation, the controller model controls
the plant model. In our proposed co-simulation approach a
controller model is designed in CPAL, and the plant model
is designed in MLSL. Controllers can easily be designed
in Simulink too. But Simulink is not offering possibilities
to study the behavior of control loops subject to scheduling
and networking delays. Varying execution times, preemption
delays, blocking delays, kernel overheads cannot be captured
in the standard Simulink environment.

process sensor pl[10ms]();
/ * Periodic process with initial offset #*/

process control p2[15ms, 2ms]();
@cpal:sched:p1l N
pl.execution_time = 2ms;

pl.deadline = 8ms;------ T is typically characterlzed by this tuple
pl.priority = 1; in real-time control systems

pl.jitter = time64.rand_uniform(0s,100us);
@cpal:sched:p2

p2.execution_time = 3ms;
p2.deadline = 12ms;
p2.priority = 2;

}p2 Jitter = time64. rand _uniform(0s,200us);

Fig. 2. CPAL real-time task model where periods, offsets, execution times,
deadlines, and release jitters are specified.

In the case of the co-simulation CPAL/MLSL, Simulink
acts as the primary simulator while CPAL executes the con-
troller model as an S-function, and is being called by the
Simulink engine. S-functions (system-functions) are high-level
programming language description of a Simulink block written
in C, C++ etc.. The CPAL control library is implemented
as a mex (Matlab Executable) file which executes the CPAL
controller model. This CPAL controller is a generic execution
engine that can run any CPAL model. The CPAL source model
is converted to a binary-equivalent representation using the
CPAL parser. The Simulink engine interacts with the CPAL
model through data flows and control flows.

Data flows are for the information exchange between the
Simulink engine and the CPAL S-function, while the control
flows define when Simulink invokes the CPAL S-function.
Tasks and real-time schedulers are available natively in CPAL.
Figure [2] shows the way to define the tasks using CPAL, called
processes in CPAL. The default CPAL scheduling policy is
FIFO, processes are executed in the order of their activation.
Non-Preemptive Earliest Deadline First (NP-EDF) and Fixed
Priority Non-Preemptive (FPNP) are also supported by CPAL.

Simulation of the plant’s dynamic is done by computing
model states at successive time steps over a specified duration.
This computation is done by a solver provided by Simulink.
Since our overall model is discrete, a variable step size solver
is used in our co-simulation approach. The rationale behind
this choice is that for the timing analysis of real-time control
systems, it is necessary to reduce the step size (when needed)
to increase the accuracy when model states are changing
rapidly during zero crossing events. In the next section, our
technique is exemplified on a use-case.

IV. CASE-STUDY: SERVO CONTROL IN AN AUTOMOTIVE FUNCTION

Idle Air Control Actuator also called as Idle Air Control
valve (IAC actuator/valve) is a device commonly used in fuel-
injected vehicles to control the engine idle RPM. This actuator
is essential because during idling (when the driver is not
pressing the accelerator pedal), the throttle valve is completely
closed, while the engine still needs some air to prevent the
engine from stalling.

Engine ECU controls this IAC actuator electrically. The
actuator is fitted such that it either bypasses the throttle or
operates the throttle valve directly. The actuator consists of a
servo motor that controls a plunger which varies the amount
of air flowing through the throttle body. The position of the
servomotor and hence the amount of air bypass is controlled
digitally by the engine ECU. More air means an increase
in the idle speed and less air indicates the reduction in idle
speed. Servo motors, by definition, run using a control loop
and require feedback of some kind to attain a desired state
(position, velocity, and so on).

Though different types of control loops exist, PID (Pro-
portional, Integral, Derivative) control loops are commonly
used in servo motors. Figure [3] shows the CPAL controller
model which controls three servos where the controller task
is activated with input-to-output delays. The interfaces of the
CPAL controller model, basically the inputs and outputs data,
are exposed in the co-design model. The input parameters
can be easily changed interactively in the design model itself.
When using a PID control loop, tuning of the servo motor
becomes necessary.

Tuning is the process of making a motor respond in the
desired way. Tuning a motor can be a challenging process,
but tuning has an advantage that, it lets the users have more
control over the behavior of the motor. Adaptive step size for
controlling the differential (D) part and integral (I) part of
PID is easily achievable in CPAL by using the introspection

2016 Sixth International Symposium on Embedded Computing and System Design (ISED)

http://www.designcps.com
http://www.designcps.com/wp-content/uploads/cpal-simulink-control-library.zip
http://www.designcps.com/wp-content/uploads/cpal-simulink-control-library.zip

O—CT s

Block Parameters: CPAL CONTROLLER
Clock Display S-Function (mask)
Parameters
Model Name | threeservos.ast
Scheduling Folicy [NP EDF -] The CPAL Controller block defines the controller
e |:| u code and the scheduling policy
oK Cancel Help Apply
111
oooo 1000
00 P r_in u1_out » > >
S4+s
Signal DC Servo 1
Generator »{y1_in u2_out q
Y- - 1000 _:I_> []
threeservos.ast | d s2+s "
»{y2_in u3_out DC Servo 2 ry
1000
y3_in schedule s2+s
DC Servo 3
CPAL CONTROLLER >
Process schedule

Fig. 3. CPAL controller model which controls the three servos. The controller tasks are activated with input to output delays. The scheduling policy can
be selected interactively and the servo control is specified as a transfer function. The process schedule scope displays the activation pattern of tasks, and the

r,y-scope displays the control performances.

mechanisms. Next section explains such features available in
our approach in comparison to existing techniques.

V. ComparisoN oF TRUETIME, T-REs witH CPAL co-SIMULATION
APPROACH

A. Scheduling and task model

Unlike TrueTime and T-Res, a real-time scheduling kernel
is inbuilt with the CPAL interpreter. Because our ultimate
research goal [8]] is to abstract all the low-level details from the
system designer, where designer would define the initial task
specifications and performance objectives such as stability,
power-consumption, etc.. This paper is in the direction of
system synthesis automation, where acceptable scheduling
configurations are identified by evaluating the control perfor-
mance with the scheduling delays.

The control task model in TrueTime is written in the
MATLAB file format or in C++. In T-Res, the task model
is a modular and triggered subsystem, executed on the occur-
rence of a function-call event. Outputs are latched to control
the plant. A task in TrueTime and T-Res is a sequence of
segments. Every segment is identified by an execution time.
Task description parameters such as the task type (periodic or
aperiodic), the inter-arrival time (period), the deadline and the
execution time are declared in MATLAB which needs to be
launched before running the controller model.

In our approach, a process, also called a task, consists of
the functioning logic described in the form of a Finite State
Machine (FSM). FSMs, possibly reduced to a single state, is
repeatedly executed. Several tasks can be executed in parallel
in which case the order of the process executions depends on

the scheduling policy. The first step is to define the process,
that is its list of parameters and the code itself. Then, one or
several instances of the process can be created. These instances
will be automatically executed at run-time by the interpreter
according to the defined activation pattern. CPAL supports all
three task types periodic, aperiodic and sporadic.

B. Decoupling of timing definitions from control code

In TrueTime, control functionality is combined with timing
definitions. There is no separation of concerns and experts in
those domains have to work together to evaluate the system
performance. On the other hand, T-Res provides a segregated
approach, where the control aspects of the controller model are
implemented using Simulink blocks and scheduling aspects
are dealt with using T-Res blocks. T-Res blocks are again
not meant for code-generation and the subsequent steps in
development life cycle. As shown in Figure] CPAL also
employs a segregated approach where control aspects are
separated from timing aspects, so that both domain designers
can work independently and seamlessly.

C. Influence of scheduling choices to control performance

The Figure [is a snippet of code of the servo-control
example described in previous section, which is originally an
example from the TrueTime distribution. This example is here
re-used with the same parameters as in [3] so as to check
that same results are achieved with our approach. It should be
noted that the CPU utilization factor with this parameter set is
1.23, the system is thus overloaded and not all task instances
can be executed.

2016 Sixth International Symposium on Embedded Computing and System Design (ISED)

98 /* Control code */
91 processdef servo_controller(out PID_data:dataA,ln float32:r,1n float32:y,out float32:'U)
52 { state Main {

24 var float32 : P; var floa:tSZ: I; var flqat32: D;

95 P = data.K*(data.beta*r-y);

96 I = data.Iold;

& D = data.Td/(data.N*data.h+data.Td)*data.Dold

z; +data.N*data.K*data.Td/(data.N*data.h+data.Td)*(data.yold-y);

100 u=P+I+D;

101 data.Iold = data.Iold + data.K*data.h/data.Ti*(r-y);
102 data.Dold = D;

03 .

s, datayed-yi)

105 /* Timing code -
106 process servo_controller

process instance defines default period, and required parameters */

: servo_controller3[4ms](data_control3,r_in, y3_in, u3_out);
167 process servo_controller :servo_controller2[5ms](data_control2,r_in, y2_in, u2_out);
198 process servo_controller : servo_controlleri{6éms](data_controll,r_in, yl_in, ul_out);
185 /% cPAL process timing annotations */

1i§ /* CPAL annotations do not require any control code modifications */

11, @cpal:time{

113 /*process priority and execution time, larger the number lower the priority*/

114 servo_controllerl.priority = 3;

115 servo_controllerl.execution_time = 2ms;
i servo_controller2.priority = 2;

i; servo_controller2.execution_time = 2ms;
119 servo_controller3.priority = 1;

120 servo_controller3.execution_time = 2ms; }

121
122
123

/* Task 3 is overwritten for execution time and jitters - to show CPAL capabilities*/
/* for the experiment in the paper below feature is not necessary and not used */

1.4 /* this annotation gives varying (random) execution time between 1 and 2 ms */

125 /* jitter annotation gives variable task scheduling jitter between @ an 180us */

126 @cpal:sched:servo_controller3

127 £ servo_controller3.execution_time = time64.rand_uniform(1ims,2ms);

1:; ¥ servo_controller3.jitter = time64.rand_uniform(@s,100us);
2

Fig. 4. Separation of control and timing aspects in a controller model of the
servo motor example. Three servo controllers tasks are defined with associated
task parameters. Here, task 3 has highest priority with an execution time and
release jitter which are varying. Task 1 has lowest priority with constant
execution time. Control code is decoupled from timing definitions given as
annotations.

Figure [5] shows the task activation pattern of the controller
tasks which control the three different servo motors under the
Fixed-Priority Non-Preemptive (FPNP) policy. Task 1 with
the lowest priority is activated less frequently than the two
others which translates into an unstable control output (see
Figure [6] top). When NP-EDF is used, all tasks are activated
as frequently and the system tends to stable.

FPNP

R

— Task 3 (High prio)
— Task 2
= Task 1 (Low prio)

Time (Sec)

Fig. 5. Task activations of the three tasks of servo control use-case. Task 1 is
the lowest priority when FPNP is selected (top diagram) and many instances
are not executed. When NP-EDF becomes the scheduling option, the number
of instances is evenly balanced between tasks.

D. Self-adapting mechanisms

In CPAL, it is possible at run-time to query execution
characteristics such as process id, period, offset, jitter, priority,
deadline and activation time of the current and previous
instance of any task. This feature is typically used to imple-
ment control algorithms that must adapt to their frequency of
execution or their execution jitters by compensating them.

1.fl==Task 1(Low prio) :
j—Task 2 H
—Task 3 (High prio) 1

'

'

'

0.6]~ ~Signal Generator

N

1
0.8 1 1.2 14
Fixed-Priority-Non-Preemptive (FPNP)

T
'
'
'
'
L
"
'
'

1
;
o i
i
[X
i
0 1
i
0. 1
|
|
o 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 20
Non-Preemptive EDF (NP-EDF) Time (Sec)
Fig. 6. Control system performance with the two scheduling options.

Under FPNP, unstability happens due to less number of execution of the
lowest priority task 1. Under NP-EDF, system performance is improved (no
oscillations) due to an equally balanced number of execution accross tasks.

Using these introspection mechanisms, it is possible to get
the actual run-time period to calculate the effective step-size
that will influence the differential and integral component
of PID control. Introspection is also useful when unstable
behavior is observed due to a less number of low priority
task executions as in the example above. By reducing at run-
time the frequency of execution of the two highest priority
tasks using the @cpal:sched:period annotation, we were able
to achieve a stable system in the previous example.

E. Benefits of re-using controller code on target hardware

A key advantage of our co-simulation approach is that the
same controller model used to evaluate control performance
in the design phase can be re-used directly to target hardware
to implement the final system. As discussed in [7], this
development cycle with less steps allows reduced interactions
between control and software engineers.

TrueTime and T-Res only supports simulation mode and
not real-time execution on target. In CPAL, the same code
can be re-used on target with the difference that timing
annotations (e.g., jitters, execution times) are ignored. On the
other hand, the annotations that define the scheduling (e.g.,
priorities, deadlines) are considered as run-time parameters
for the execution engine. Table [[] summarizes the comparison
of the approaches discussed in this paper to evaluate the
performance of latency-sensitive control systems.

VI. CONCLUSIONS AND OUTLOOK

The timing behaviour of control tasks is a critical concern
in real-time digital controllers. These delays, such as start-
of-execution jitters, or missed executions, affect the system
performance and need to be considered during the design
phase. The approaches developed in the past to study the
performance of the control system due to run-time delays
are simulation approaches, not supporting the implementation
of the system. In this paper, a model-driven co-simulation
based development approach is proposed and illustrated with
a servo control example. This federated approach provides the
designer with both simulation and execution capabilities to
define and validate functional and non-functional behaviors.
The benefits of the proposed technique over the state-of-the-
art are discussed in this paper, amongst which a good support
for rapid-prototyping to shorten the development cycle.

2016 Sixth International Symposium on Embedded Computing and System Design (ISED)

TABLE I

ComPARISON OF CPAL c0-SIMULATION IN MATLAB/SIMULINK WITH EXISTING APPROACHES.

Characteristics

TrueTime in MLSL

T-Res in MLSL

SimEvents in MLSL

CPAL in MLSL

Scheduling kernel

Separate kernel

Separate kernel

Built-in kernel

Built-in kernel

environment

Task model .mfile / C++ Graphical model Graphical model CPAL model(C alike)
Control and timing | No Yes Yes Yes

separation

Scheduling policies | Almost all Almost all Only basic policies | FIFO, FPNP, NPEDF
supported

Target Execution No No No Yes (Raspberry Pi,

Freescale FRDM)

Simulation strategy

Discrete event
simulation with
variable step-size
with zero crossing

Discrete event
simulation with
variable step-size
with zero crossing

Improved Discrete
event simulation

Discrete event
simulation with
variable step-size with
zero crossing

code cannot be
generated from

code cannot be
generated from

code cannot be
generated from

Control system Possible Possible Not possible Introspection
compensation mechanism enables
tuning of control law
Rapid-prototyping | Not possible Not possible Not possible Easily achievable
Code-generation Not possible, Not possible, Not possible, Not necessary,

controller model can
run directly on target

TrueTime blocks T-Res blocks SimEvents blocks
Model — code gaps | may happen may happen may happen Model is code, no gaps
ACKNOWLEDGMENT and Embedded Technology and Applications Symposium

This research is supported by FNR (Fonds National de la
Recherche), the Luxembourg National Research Fund (AFR
Grant n°10053122).

[1]
(2]

REFERENCES

MATLAB/Simulink, SimEvents. http://nl.mathworks.com/
products/simevents/. Accessed: 2016-08-26.

C. G. Cassandras, M. I. Clune, and P. J. Mosterman.
Hybrid system simulation with simevents. In 2nd IFAC
Conference on Analysis and Design of Hybrid Systems,
June 2006.

A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-
E. Arzén. How does control timing affect performance?
Analysis and simulation of timing using Jitterbug and
TrueTime. IEEE Control Systems Magazine, 23(3), June
2003.

L. Fejoz, N. Navet, S. M. Sundharam, and S. Altmeyer.
Applications of the cpal language to model, simulate and
program cyber-physical systems. In 2016 IEEE Real-Time

(8]

(RTAS), April 2016.

M. Morelli, F. Cremona, and M. Di Natale. A system-
level framework for the evaluation of the performance
cost of scheduling and communication delays in control
systems. In 5th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems,

July 2014.
N. Navet, L. Fejoz, L. Havet, and S. Altmeyer. Lean

model-driven development through model-interpretation:
the CPAL design flow. In Embedded Real-Time Software
and Systems (ERTSS2016), January 2016.

S. M. Sundharam, S. Altmeyer, and N. Navet. Model
interpretation for an AUTOSAR compliant engine control
function. In 7th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems
(WATERS), July 2016.

S. M. Sundharam, S. Altmeyer, and N. Navet. An opti-
mizing framework for real-time scheduling. In 2016 IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2016.

2016 Sixth International Symposium on Embedded Computing and System Design (ISED)

http://nl.mathworks.com/products/simevents/
http://nl.mathworks.com/products/simevents/

