
Towards a declarative modeling and execution framework
for real-time systems

Sebastian Altmeyer
University of Luxembourg

Luxembourg
sebastian.altmeyer@uni.lu

Nicolas Navet
University of Luxembourg

Luxembourg
nicolas.navet@uni.lu

ABSTRACT
Our work is a contribution towards addressing what Thomas Hen-
ziger called the grand challenge in embedded software design [5]:
"offering high-level programming models that exposes the execu-
tion properties of a system in a way that permits the programmer
to express desired reaction and execution requirements, permits
the compiler and run-time systems to ensure that these require-
ments are satisfied". In the programming model we describe here,
the developer states the permissible timing behavior of the system,
a system synthesis step involving both analysis and optimization
generates a scheduling solution which at run-time is enforced by
the execution environment. With respect to the synchronous pro-
gramming models, our approach implements a weaker version of
time-determinism, still providing a form of timing-predictability
sufficient in many applications while remaining closer to mainstay
software development practices. This approach is currently being
implemented and experimented in the CPAL language development
tools and associated runtime environment.

1. INTRODUCTION
Current design practices in real-time embedded and cyber-physical

systems (CPS) usually treat real-time behavior as a mere by-product
of the functional implementation. For instance, in many Model-
Driven Development (MDD) flows the computational resources avail-
able are even considered to be infinite and the quality-of-service
that can be offered by the execution platform is just not considered.
When timing verification is a matter of concern, typically the com-
plete code is developed and bounds on the task execution times are
derived by static or dynamic timing analysis later on. A schedul-
ing analysis then checks whether all tasks can be executed on the
system so that the timing requirement are met. This design process
is suboptimal: it may result in time-consuming and costly modifi-
cations late in the development process, and spare computational
resources are not taken advantage of in domains where most of the
innovation stems from software.

We advocate an alternative design process and propose to treat
the timing as a first-class citizen: the desired timing behavior is
specified in a declarative fashion – already at high-level and along-

Copyright retained by the authors.

side the functional behavior. At design time, timing bounds on
the functional components will be derived and optimized, and the
execution framework then enforces the correct timing behavior at
run-time. The implementation details, i.e., how exactly the tim-
ing behavior is realized at run-time is transparent to the system
developer. This is in stark contrast to traditional design and execu-
tion environments where precise knowledge about the timing and
execution model is required, and often the timing implementation
must be provided by the system designer. Our approach is inspired
by the synchronous programming models, such as Lustre [4] and
Giotto [6], but provides a weaker version of time-determinism suf-
ficient in many applications, while offering a programming model
closer to mainstay software development practices.

First, we detail our approach towards a declarative development
of real-time systems, then present the modeling and execution frame-
work that implements our approach.

2. TIMING DETERMINISM AND TIMING
CORRECTNESS

The correctness of a cyber-physical system is not only defined
by its functional behavior, but also by its timing behavior. Con-
sequently, deterministic timing behavior, called time determinism
in [5], is desired. Similarly to functional determinism, i.e., the same
input always leads to the same output, we desire systems, where
the timing of events is pre-determined and well-defined. Modern
architectures with history-sensitive components such as caches and
buffers, however, lead to significant variations of execution times
and are increasingly complex to analyze. Despite the determinism
of all individual components of modern processors, the complex in-
terplay thereof appears non-deterministic if it cannot be fully com-
prehended. In addition, changing environmental conditions, such
as temperature or EMI, will affect the functioning of the system.
For instance, significant clock drifts are caused by varying temper-
atures [9]. Completely time-deterministic systems as defined in [5]
are thus hard to achieve.

On a side note, the demand for determinism cannot be easily
transferred from the functional to the temporal domain for the fol-
lowing reasons: The functional behavior is independent of the tar-
get system (modulo implementation errors and hardware failures),
whereas the timing behavior depends on the precise target architec-
ture; and small changes to a system can have a tremendous impact
on the timing behavior [14]. Similarly, the question of what can be
computed? is well studied and can be answered using theoretical
abstractions such as Turing machines, whereas the question will the
system react within xy ms? requires knowledge about the run-time
environment.

A system’s timing correctness is usually not nearly as strictly de-
fined as time-determinism. For most systems, it is sufficient if the



timing of events respects a set of constraints specific to the needs
of the cyber-physical system, thus allowing a substantial degree
of freedom. For instance, a system may has to react to an input
within a given time bound, the order of some events may be essen-
tial, or a computation may has to be repeated periodically. Several,
distinct time-deterministic systems can exhibit distinct timing be-
haviors, which are all considered correct, and furthermore, systems
can show substantial timing variations at run-time and still be con-
sidered correct. In any case, a time-deterministic system is not a
necessity for the timing correctness in general.

3. DECLARING TIMING CORRECTNESS
As detailed in the previous section, timing correctness does not

necessarily entail a fully time-deterministic system, but it requires
the fulfillment of a set of temporal constraints. Our aim is to pro-
vide a modeling framework, where the developer only needs to
specify these constraints that determine the timing correctness. The
developer is thus exempt from the burden of specifying how the
timing correctness will be realized.

To this end, we provide a modeling and execution environment
that treats the timing behavior at design time in a declarative fash-
ion, and determines a feasible schedule – fully transparent to the
user – that implements the timing correctness.

The main entities of our modeling framework are processes, which
implement some functional behavior. The timing correctness of
the system can be declared using the following four types of con-
straints:

Execution frequency: Each process must be assigned an execu-
tion frequency, or execution period. This value denotes the
time between two successive releases of the process. The
period can be defined as a range instead of a single value.
Especially control applications often do not require exact pe-
riods, but are valid for a larger range of periods, where the
highest rate of execution usually leads to a better control.
Example: process τa executes every [x : y] seconds.

Conditional execution: This activation scheme serves to imple-
ment functions that have to interact with the system environ-
ment or to enable different functioning modes.
Example: process τa executes (i) if its period has elapsed and
(ii) if condition C evaluates to true.

Relative deadlines: The relative deadline denotes the relative time
after process invocation until the process has to finish. In
contrast to the period, the deadline is a single numeric value.
A range of values would be futile, as the run-time environ-
ment must ensure the system is feasible with respect to the
most stringent deadline. Unless specified explicitly, a pro-
cess’s deadline is equal to its minimal period.
Example: process τa must complete within y seconds.

Temporal dependencies: A temporal dependency can be required
to ensure a chronological order of processes. On top of log-
ical ordering, a minimal and maximal offset between a pro-
cess is finished and another one is started can be specified.
When no temporal dependencies are specified, the execution
order is irrelevant. This means that the execution framework
is free to select the order of process executions.
Example: process τa must execute after process τb has fin-
ished.

The complete timing correctness is to be specified using these four
types of constraints. This list may not be exhaustive, and will be

enriched based on the requirements from case-studies and examples
that are being developed in the context of this project (see 7).

It should be pointed out that the scheduling specific parameters,
such as priorities in case of fixed-priority scheduling or time slots
in case of TDMA or Round-Robin, or offsets are not required. In
fact, even the scheduling policy of the system does not necessarily
need to be communicated to the system designer.

4. EXECUTION ENVIRONMENT
A strong argument in favor of time-determinism remains debug-

gability and repeatability. Providing these features to the devel-
oper strongly improves the usability of the execution environment.
Instead of a fully time-deterministic system, our execution frame-
work shall enforce a fixed and deterministic event order. The exact
timing of an event may be subject to variations that can be evalu-
ated by a schedulability analysis, but the order in which observable
events, such as process invocation or process termination, happen
shall be statically defined. We refer to this property as event-order
determinism.

If we solely concentrate on implementing a system’s timing cor-
rectness, we can select from a large variety of scheduling and exe-
cution models. Among the various scheduling algorithm, we have
selected FIFO scheduling which is a predictable and lightweight
policy particularly suited to our needs: FIFO schedules processes
non-preemptively and exhibits event-order determinism, i.e., the
order of process executions is defined statically and immutable.
With this choice, we favor predictability and simplicity over an
optimized use of the computational resources. Considering other
scheduling policies will be future work.

In FIFO scheduling [8], processes are released strictly period and
are executed in order of process release. To this end, the scheduler
maintains a FIFO queue with ready processes waiting for dispatch.
Processes can be assigned priorities, that serve as tie breakers in
case of simultaneous process releases.

Nevertheless FIFO scheduling is – in stark contrast to static-
cyclic scheduling – a work-conserving scheduling policy and is
resilient to overload conditions with respect to event-order deter-
minism. A system-wide clock is required to trigger process activa-
tion and to ensure determinism. All process release times are thus
subject to the very same clock drifts, enforcing the unique execu-
tion order, but also restricting the system to uni-core processors or
partitioned multicore scheduling.

FIFO scheduling is known to perform worse than priority-driven
dynamic scheduling policies, such as rate-monotonic or earliest
deadline first, and is usually considered unfit for real-time sys-
tems [7]. We share this opinion in case of sporadic process re-
lease times. The critical instance is given when all processes other
than process P have just been added to the FIFO queue prior to the
release of P. Hence, the system is only schedulable under FIFO
scheduling, if the sum of all process execution times is less than
the deadline of each process. In a fully time-triggered system with
a global clock, offsets can be used to distribute the workload as
done in [10]. This offset optimization has great potential to allevi-
ate the performance issues of FIFO scheduling.

The scheduling model is formally defined as follows: We assume
a system composed of n processes {τ1, . . . τn} running on a single
processor. Each process τi is represented by a tuple

τi : (Oi,Ci,Ti,Di),

where Oi is the process’s release offset, Ci the worst-case execution
demand, Ti the process’s period and Di the deadline. A process
produces an infinite sequence of jobs τi, j with j ∈ N. The job



release time ri, j of job τi, j is given by

ri, j = Oi + jTi (1)

and its absolute deadline by

di, j = Oi + jTi + Di. (2)

The computation of the execution times is out of scope of this
paper. We assume that a timing analysis, either static or dynamic,
provides safe bounds on the execution times of the processes.

5. SCHEDULER SYNTHESIS
The timing correctness is defined based on a set of constraints

that just cover the essential minimum of what constitutes a tempo-
rally correct system. In our approach, the execution environment
is completely statically defined and thus all execution parameters
are to be known. In particular, the exact period of each process and
the release offsets must be selected beforehand. We bridge this gap
using the following two successive steps:

(i) Period Selection: In a first step, the periods are fixed accord-
ing to one of the three heuristics, in the order of increasing
likelihood to determine a feasible schedule.

1. Best Performance: The minimal defined periods are se-
lected, thus improving the observable system perfor-
mance, i.e., highest processing frequency.

2. Minimal Hyperperiod: The periods are selected as to min-
imize the hyperperiod, defined as the least common
multiple of the process periods. A minimal hyperpe-
riod makes it easier to use an exact schedulability test
based on simulation. In addition, it also eases the com-
prehension of the system behaviour by the designer.

3. Lowest Processor Utilization: The maximal defined pe-
riods are selected, thus minimizing the processor uti-
lization and maximizing the chance to derive a schedu-
lable system.

(ii) Offset Optimization: The offsets are selected as to distribute
the workload over time and to avoid load peaks, while re-
specting the timing correctness constraints [10].

We offer two schedulability checks, an exact test based on simu-
lation and an approximate test based on the schedulability test for
non-preemptive scheduling with offsets [12]. A feasibility test via
simulation requires simulation up to twice the hyperperiod, which
may be infeasible in many situations. We therefore set a time bound
to limit the analysis time. Figure 1 illustrates the flow graph of
the scheduler synthesis. Our approach differs from other scheduler
synthesis tools, such as [1] in that we provide a complete frame-
work to specify, optimize and execute the timing behavior. The
scheduler synthesis is thus tailored towards the framework.

6. DEVELOPMENT PROCESS
So far, we have outlined (i) how the timing correctness can be de-

clared, (ii) how the execution environment schedules the processes,
and (iii) how a feasible schedule implementing the desired timing
behavior can be determined. In this section, we detail the timing
declarative design flow as illustrated in Figure 2. The parts shaded
in blue are the novel components described in the paper.

The model of the cyber-physical system is composed of the func-
tional implementation and the timing declaration. The functional
implementation is input to the timing analysis, which computes

Start
Iter = 0

Select Periods

Optimize Offsets

exact
feasibility

test

approx.
feasibility

test

Iter++

Iter < 3

System
Feasible

System
Infeasible

timeout

yes

yes

No

No

No
Yes

Figure 1: Flowchart of the Scheduler Synthesis.

bounds on the execution times of the functional components, de-
noted as processes in our framework. Note that we resort the ex-
isting static or dynamic analysis tools, as the worst-case execution
time problem [13] is out of scope of this paper. The execution time
bounds, as well as the timing model are inputs to the scheduler
synthesis, which aims to derive a feasible scheduling configura-
tion. If successful, the scheduling configuration is communicated
to the simulator and the runtime environment, which implements
the scheduling policy on the target system.

Even though the scheduler synthesis is an integral part of the
framework, it is transparent to the system designer. The system
designer only has access to the (functional and timing) model of
the system and to the simulator. The simulator is used to present
the synthesized schedule to the designer.

Functional Model Timing Model Simulator

U
serV

iew
System

V
iew

Timing
Analysis

Timing
Bounds

Scheduler
Synthesis

Scheduling
Configuration

D
es

ig
n

Ti
m

e
R

un
tim

e Runtime
Environment

Figure 2: The timing declarative development process.

7. THE CPAL APPROACH
The ideas developed in this paper are already partially imple-

mented in the CPAL (Cyber-Physical Action Language) modeling
and development environment which aims at developing a model-
driven development flow for timing-predictable embedded systems
(see [11]). The vision behind CPAL is that programs can be ex-
ecuted and verified in simulation mode on a workstation and the
exact same code can be later run on an embedded board with an
equally acceptable timing behavior.



Figure 3: The CPAL editor shows the functional architecture
of a system (top-left), the FSM describing the logic of a process
(bottom-left) and the scheduling of the processes as seen during
a simulation.

CPAL serves to describe both the functional behavior of the func-
tions, that is their code, as well as the functional architecture of the
system (i.e., the set of functions, how they are activated, and the
data flows among the functions). CPAL offers high-level abstrac-
tions that are natural for the development of CPS such as:

• Real-time scheduling mechanisms: processes can be acti-
vated with a user-defined period and offset relationships, with
the optional requirement that a specific logical condition is
fulfilled.

• Finite State Machines (FSM): the logic of a process is defined
as a Finite State Machine (FSM) where code can be executed
in the states, or upon the firing of transitions.

• Communication channels to support control and data flow
exchanges between processes, and read/write to hardware
I/O ports with well-defined policies (FIFO or LIFO buffer-
ing, data overwriting).

• Introspection mechanisms that enable processes to query at
run-time execution characteristics such as their activation rate
and activation jitters.

CPAL development is driven by the experience gathered from
realistic case-studies. For instance, a CPAL model is used in [15] to
simulate the SOME/IP Service Discovery protocol used to manage
service-oriented communication in automotive Ethernet networks.
CPAL is also used in [2] to propose a solution to the Thales FMTV
challenge (timing verification of an aerial video tracking system)
and develop a smart parachute for UAVs in [3].

CPAL is a language jointly developed by our research group at
the University of Luxembourg and the company RTaW. The CPAL
documentation, graphical editor and simulation engine for Win-
dows, Linux and Raspberry Pi platforms are freely available for
all use from http://www.designcps.com.

8. CONCLUSIONS AND FUTURE WORK
This paper outlines a proposal for the development of CPS us-

ing a declarative language for the specification of non-functional
timing properties. The same approach can be extended to other
non-functional concerns such as power consumption. We believe
that the increasing complexity of today’s hardware platforms (mul-
ticore, SOC, etc) calls for methods that automate the synthesis and
deployment embedded systems, and hide away from the program-
mer the complexity of the scheduling mechanisms and hardware
platforms.

Purely synchronous development frameworks have brought ma-
jor progresses to the development of embedded systems over the
last 30 years, and are certainly very well suited in some applica-
tion domains such as safety-critical systems. However, in many
cases, we believe that more lightweight and less demanding pro-
gramming models are able to guarantee the necessary timing pre-
dictability without over-constraining the design and development.
The proposal discussed here, currently under implementation and
experimentation in the CPAL development environment, is a con-
tribution in that direction.

References
[1] K. Altisen, G. Gossler, A. Pnueli, J. Sifakis, S. Tripakis, and

S. Yovine. A framework for scheduler synthesis. In Proceedings of
the 20th IEEE Real-Time Systems Symposium (RTSS), Dec. 1999.

[2] S. Altmeyer, N. Navet, and L. Fejoz. Using CPAL to model and vali-
date the timing behaviour of embedded systems. In 6th International
Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), Lund, Sweden, July 2015.

[3] L. Ciarletta, L. Fejoz, A. Guenard, and N. N. Development of a safe
CPS component: the hybrid parachute, a remote termination add-on
improving safety of UAS. In Embedded Real-Time Software and Sys-
tems (ERTSS) (to appear), January 2016.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data-flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[5] T. A. Henzinger. Two challenges in embedded systems design: pre-
dictability and robustness. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sci-
ences, 366(1881):3727–3736, 2008.

[6] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the
IEEE, 91(1):84–99, 2003.

[7] H. Leontyev and J. H. Anderson. Tardiness bounds for FIFO schedul-
ing on multiprocessors. In 19th Euromicro Conference on Real-Time
Systems (ECRTS), Washington, DC, USA, 2007.

[8] S. Martin, P. Minet, and L. George. Non-premptive fixed priority
scheduling with FIFO arbitration:uniprocessor and distributed cases.
Research Report RR-5051, INRIA, 2004.

[9] A. Monot, N. Navet, and B. Bavoux. Impact of clock drifts on CAN
frame response time distributions. In 16th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA
2011), 2011.

[10] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion. Multisource
software on multicore automotive ecus combining runnable sequenc-
ing with task scheduling. IEEE Transactions on Industrial Electron-
ics, 59(10):3934–3942, Oct 2012.

[11] N. Navet, L. Fejoz, L. Havet, and S. Altmeyer. Lean model-driven
development through model-interpretation: the CPAL design flow. In
Embedded Real-Time Software and Systems (ERTSS) (to appear), Jan-
uary 2016.

[12] R. Pellizzoni and G. Lipari. Feasibility analysis of real-time periodic
tasks with offsets. Real-Time Systems, 30(1-2):105–128, May 2005.

[13] R. Wilhelm and al. The worst-case execution-time problem - overview
of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):1–53, April 2008.

[14] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker. A Definition and Classification of Timing Anomalies.
In 6th International Workshop on Worst-Case Execution Time Analy-
sis (WCET), July 2006.

[15] J. R. Seyler, T. Streichert, M. Glaß, N. Navet, and J. Teich. Formal
analysis of the startup delay of SOME/IP Service Discovery. In De-
sign, Automation & Test in Europe Conference (DATE), January 2015.


