Towards a declarative modeling and execution
framework for real-time systems

Sebastian Altmeyer, Nicolas Navet

UNIVERSITY OF
LUXEMBOURG

1.DPRTCPS, San Antonio 2015

More than 35 years of Research in Real-Time Systems

with some very impressive results and applications ...

1/15

More than 35 years of Research in Real-Time Systems

with some very impressive results and applications ...

... but timing is still a mere side-product.

1/15

Design of an real-time/cyber-physical system:

» timing behaviour happens
(side product of the functional behaviour)

» timing verification after system integration

» system designer must be aware of all scheduling details
few abstractions provided

» even dedicated design tools avoid timing specification
(Matlab, SCADE/Esteral, Ascet)

2/15

Design of an real-time/cyber-physical system:

» timing behaviour happens
(side product of the functional behaviour)

» timing verification after system integration

» system designer must be aware of all scheduling details
few abstractions provided

» even dedicated design tools avoid timing specification
(Matlab, SCADE/Esteral, Ascet)

=

timing is not treated as a first-class citizen

2/15

Principles of our declarative framework:

» Designer only declares the desired timing behaviour
» Show only what is needed to the designer, hide the rest.
» Simplicity is key.

Premise:
Better abstraction of a system’s timing behaviour needed!

3/15

Example: Specifying timing behaviour

State-of-the art: Plenty of design choices and details.

» Do we allow pre-emption?
» Static or dynamic scheduling? %
. . . 2(P- F) 2P Q9
» Which scheduling policy? L= AL
» Dynamic or static priorities? - e
. L m | b
» How to assign priorities? SRR _—
Il [L

Concentrates on how to realize the timing behaviour

4/15

Example: Specifying timing behaviour

Our vision: Only declare timing correctness.

4 simple types of constraints*:

Execution frequency: process 7, executes every [x : y] seconds.

Conditional execution: process 7, executes (i) if its period has
elapsed and (ii) if condition C evaluates to true.

Relative deadlines: process 75 must complete within y seconds.

Temporal dependencies: process T, must execute after process
7p has finished.
*(Complete? Probably not, but sufficient to start with.)

Concentrates on what instead of how, environment does the rest.

5/15

Designer Perspective

[Functional Model J [Timing Model J

+ MIA J8sN 4

» Designer writes the functional and timing model

6/15

Designer Perspective

[Functional Model J [Timing Model]

+ MIA J8sN 4

Runtime
Environment

+ Runtime -

» Designer writes the functional and timing model
... in the way it shall behave on the system.

6/15

Designer Perspective

[Functional Model J [Timing Model]

} }

F MOIA JOS(4

Hidden details

Runtime
Environment

+ Runtime -

» Designer writes the functional and timing model
... in the way it shall behave on the system.

» Hide as many details as possible

6/15

Designer Perspective

[Functional Model J [Timing Model]

| ! i

F MOIA JOS(4

Hidden details

Runtime
Environment

+ Runtime -

» Designer writes the functional and timing model
... in the way it shall behave on the system.

» Hide as many details as possible
... but show how it will behave.

6/15

The complete picture

F MBIA J8S(-

F Runtime H

7/15

The complete picture

[Functional Model J [Timing Model J Simulator

F MBI Jos(4

—— Design Time ——

Timing
Analysis Scheduler Scheduling
Y q —— .
— Synthesis Configuration %)

Timing S
- =
2 Runtime S
£ Environment
&
£

7/15

The complete picture

w =
[
@
[Functional Model J [Timing Model J Simulator <
2 :
i: 777 - .
c
k=2
g Timing
Analysis Scheduler Scheduling
| Y | Synthesis Configuration %)
3
B] B
" 5
2 Runtime =
£ Environment
&
£

7/15

Runtime Environment

> uniprocessor system

» a system-wide clock

» time-triggered task release + FIFO queues
» prototype environment for Raspberry Pi

8/15

FIFO Scheduling: Why?

» easy to implement
» non-pre-mptive policy
> unigue event-order

» ensures equivalence between

(i) runtime behaviour
(i) simulation

» (work-conserving)
» resilient to overload conditions
» but not as performant as EDF/RM

9/15

FIFO Scheduling: How?

» nprocesses (tasks) {r1,...7n}

» for each process 7;: (O;, Cj, Ti, D)),
O, offset
C; execution time bound
T; period (strictly periodic)
D; relative deadline

10/15

Scheduler Synthesis

(i) Period Selection: Try:
1. Best Performance
2. Minimal Hyperperiod
3. Lowest Utilization
(i) Offset Optimization:
distribute the workload
and avoid load peaks

Start
Iter =0

w—v Select Periods
Optimize
Offsets

exact
feasibility

approx.
feasibility
No test

System System
Infeasible Feasible

11/15

The complete picture

w =
[
@
[Functional Model J [Timing Model J Simulator <
2 :
i: 777 - .
c
k=2
é Timing
Analysis Scheduler Scheduling
| Y | Synthesis Configuration %)
3
B] B
" 5
2 Runtime =
£ Environment
&
£

12/15

The complete picture

=
[
w —)]
[Functional Model] [Timing Model J Simulator <
2 z
i: 777 - .
c
k=2
é Timing ‘
Analysis Scheduler tbd Scheduling
— | Synthesis Configuration %)
:
e |] B
" 5
2 Runtime S
£ Environment
&
£

12/15

The complete picture, partly integrated
Design environment (Cyber-Physical Action Language CPAL)'

RN
'ERRREEE
ATl
AT

SERRRRE

1 . ;
https://www.designcps.com/ 13/15

The complete picture, partly integrated
Design environment (Cyber-Physical Action Language CPAL)'

|
) (‘— Textural description
of the model

Functional + =——

Temporal Model |
|
|
|
|

| | Simulation
| result

Functional model .
of a process/task mm—.

1 . ;
https://www.designcps.com/ 13/15

The complete picture, partly integrated
Design environment (Cyber-Physical Action Language CPAL)'

|
Functional + =—— (‘— Textural description

Temporal Model | of the model
|
|
|
{
Functional model | | Simulation
of a process/task —p | result

Runtime environment:

1 . ;
https://www.designcps.com/ 13/15

Conclusions

Is it possible to just declare what what correct timing behaviour
means, instead of defining how it is realized?

|

13 2

e T s el :

§ Timing

Analysis Scheduler Scheduling

\ Synthesis Confi ° |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1

3 T H | |

= — RERRREE

é - [

Declarative modeling and execution framework
» hide as much as possible from the designer
» automatize what’s possible
» simplicity and usability in mind

14/15

Questions?

	Motivation
	Timing Declarative Development Process
	User View
	System View

