
Towards a declarative modeling and execution
framework for real-time systems

Sebastian Altmeyer, Nicolas Navet

1.DPRTCPS, San Antonio 2015



More than 35 years of Research in Real-Time Systems

with some very impressive results and applications ...

... but timing is still a mere side-product.

1 / 15



More than 35 years of Research in Real-Time Systems

with some very impressive results and applications ...

... but timing is still a mere side-product.

1 / 15



Design of an real-time/cyber-physical system:

I timing behaviour happens
(side product of the functional behaviour)

I timing verification after system integration
I system designer must be aware of all scheduling details

few abstractions provided
I even dedicated design tools avoid timing specification

(Matlab, SCADE/Esteral, Ascet)

⇒

timing is not treated as a first-class citizen

2 / 15



Design of an real-time/cyber-physical system:

I timing behaviour happens
(side product of the functional behaviour)

I timing verification after system integration
I system designer must be aware of all scheduling details

few abstractions provided
I even dedicated design tools avoid timing specification

(Matlab, SCADE/Esteral, Ascet)

⇒

timing is not treated as a first-class citizen

2 / 15



Principles of our declarative framework:

I Designer only declares the desired timing behaviour
I Show only what is needed to the designer, hide the rest.
I Simplicity is key.

Premise:
Better abstraction of a system’s timing behaviour needed!

3 / 15



Example: Specifying timing behaviour

State-of-the art: Plenty of design choices and details.

I Do we allow pre-emption?
I Static or dynamic scheduling?
I Which scheduling policy?
I Dynamic or static priorities?
I How to assign priorities?

Concentrates on how to realize the timing behaviour

4 / 15



Example: Specifying timing behaviour

Our vision: Only declare timing correctness.

4 simple types of constraints*:

Execution frequency: process τa executes every [x : y] seconds.

Conditional execution: process τa executes (i) if its period has
elapsed and (ii) if condition C evaluates to true.

Relative deadlines: process τa must complete within y seconds.

Temporal dependencies: process τa must execute after process
τb has finished.

*(Complete? Probably not, but sufficient to start with.)

Concentrates on what instead of how, environment does the rest.

5 / 15



Designer Perspective

Functional Model Timing Model

U
serV

iew

I Designer writes the functional and timing model

I Hide as many details as possible

6 / 15



Designer Perspective

Functional Model Timing Model

U
serV

iew

R
un

tim
e Runtime

Environment

I Designer writes the functional and timing model
... in the way it shall behave on the system.

I Hide as many details as possible

6 / 15



Designer Perspective

Functional Model Timing Model

U
serV

iew
Timing

Analysis

Timing
Bounds

Scheduler
Synthesis

Scheduling
Configuration

R
un

tim
e Runtime

Environment

Hidden details

I Designer writes the functional and timing model
... in the way it shall behave on the system.

I Hide as many details as possible

6 / 15



Designer Perspective

Functional Model Timing Model Simulator

U
serV

iew
Timing

Analysis

Timing
Bounds

Scheduler
Synthesis

Scheduling
Configuration

R
un

tim
e Runtime

Environment

Hidden details

I Designer writes the functional and timing model
... in the way it shall behave on the system.

I Hide as many details as possible
... but show how it will behave.

6 / 15



The complete picture

Functional Model Timing Model Simulator

U
serV

iew

Timing
Analysis

Timing
Bounds

Scheduler
Synthesis

Scheduling
Configuration

R
un

tim
e Runtime

Environment

Hidden details

7 / 15



The complete picture

Functional Model Timing Model Simulator

U
serV

iew
S

ystem
V

iew

Timing
Analysis

Timing
Bounds

Scheduler
Synthesis

Scheduling
Configuration

D
es

ig
n

Ti
m

e
R

un
tim

e Runtime
Environment

7 / 15



The complete picture

Functional Model Timing Model Simulator

U
serV

iew
S

ystem
V

iew

Timing
Analysis

Timing
Bounds

Scheduler
Synthesis

Scheduling
Configuration

D
es

ig
n

Ti
m

e
R

un
tim

e Runtime
Environment

7 / 15



Runtime Environment

I uniprocessor system
I a system-wide clock
I time-triggered task release + FIFO queues
I prototype environment for Raspberry Pi

8 / 15



FIFO Scheduling: Why?

I easy to implement
I non-pre-mptive policy
I unique event-order
I ensures equivalence between

(i) runtime behaviour
(ii) simulation

I (work-conserving)
I resilient to overload conditions
I but not as performant as EDF/RM

9 / 15



FIFO Scheduling: How?

I n processes (tasks) {τ1, . . . τn}

I for each process τi : (Oi ,Ci ,Ti ,Di),

Oi offset
Ci execution time bound
Ti period (strictly periodic)
Di relative deadline

10 / 15



Scheduler Synthesis

(i) Period Selection: Try:
1. Best Performance
2. Minimal Hyperperiod
3. Lowest Utilization

(ii) Offset Optimization:
distribute the workload
and avoid load peaks

Start
Iter = 0

Select Periods

Optimize
Offsets

exact
feasibility

test

approx.
feasibility

test

Iter++

Iter < 3

System
Feasible

System
Infeasible

timeout

yes

yes

No

No

No
Yes

11 / 15



The complete picture

Functional Model Timing Model Simulator

U
serV

iew
S

ystem
V

iew

Timing
Analysis

Timing
Bounds

Scheduler
Synthesis

Scheduling
Configuration

D
es

ig
n

Ti
m

e
R

un
tim

e Runtime
Environment

12 / 15



The complete picture

Functional ModelX Timing ModelX∗ SimulatorX

U
serV

iew
S

ystem
V

iew

Timing
AnalysisX∗

Timing
Bounds

Scheduler
Synthesis

tbd Scheduling
Configuration

D
es

ig
n

Ti
m

e
R

un
tim

e Runtime
Environment X

12 / 15



The complete picture, partly integrated
Design environment (Cyber-Physical Action Language CPAL)1

Runtime environment:

1https://www.designcps.com/ 13 / 15



The complete picture, partly integrated
Design environment (Cyber-Physical Action Language CPAL)1

Functional +
Temporal Model

Functional model
of a process/task

Textural description
of the model

Simulation
result

Runtime environment:

1https://www.designcps.com/ 13 / 15



The complete picture, partly integrated
Design environment (Cyber-Physical Action Language CPAL)1

Functional +
Temporal Model

Functional model
of a process/task

Textural description
of the model

Simulation
result

Runtime environment:

1https://www.designcps.com/ 13 / 15



Conclusions

Is it possible to just declare what what correct timing behaviour
means, instead of defining how it is realized?

Functional Model Timing Model Simulator

U
serV

iew
S

ystem
V

iew

Timing
Analysis

Timing
Bounds

Scheduler
Synthesis

Scheduling
Configuration

D
es

ig
n

Ti
m

e
R

un
tim

e Runtime
Environment

Declarative modeling and execution framework
I hide as much as possible from the designer
I automatize what’s possible
I simplicity and usability in mind

14 / 15



Questions?


	Motivation
	Timing Declarative Development Process
	User View
	System View


