
CPAL: High-Level Abstractions for Safe Embedded Systems

Nicolas Navet
University of Luxembourg / FSTC
6 rue Richard Coudenhove-Kalergi
Luxembourg, 1359, Luxembourg

nicolas.navet@uni.lu

Loïc Fejoz
RealTime-at-Work (RTaW)
4 rue Piroux, Centre Atrium

Nancy, 54000, France
loic.fejoz@realtimeatwork.com

Abstract
Innovation in the field of embedded systems, and more
broadly in cyber-physical systems, increasingly relies on
software. The productivity gain in software development
can hardly keep up with the demand for software despite the
increasing adoption of Model-Driven Development (MDD).
In this context, we believe that major productivity and qual-
ity improvements are still ahead of us through better pro-
gramming languages and environments. CPAL, the Cyber-
Physical Action Language, is a contribution in that direction
with the objective to speed-up the development of embedded
systems with dependability constraints. The objective of this
paper is to present and illustrate the use-cases of the high-
level abstractions offered to the developer in CPAL with
respect to real-time scheduling, introspection mechanisms,
native support of Finite State Machines (FSMs), abstract-
ing the hardware and decoupling functional concerns from
non-functional concerns.

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures

Keywords Cyber-Physical Systems, Embedded Systems,
Model-Driven Development, Control Applications, Depend-
ability

1. Introduction and Related Work
Context of the Work. Innovation crucially relies on soft-
ware today and software is actually disrupting complete
fields of the economy and the industry. Embedded systems,
and Cyber-Physical Systems at large, are no exception what-
ever their application domains: vehicles, medical devices,
home appliances, factory automation, power distribution, In-

ternet of Things (IoT), etc. If the amount of software is grow-
ing fast, the productivity gains in software development are
much slower. In this landscape, Model-Driven Development
is certainly a key technology but, in our view, programming
languages still lack the high-level abstractions and automa-
tion features (“state the what, not the how”) that would make
them more productive.

The objective of CPAL is to offer a solution to fill this
gap for the domain of embedded systems. CPAL is a high-
level interpreted language supporting a model-driven devel-
opment flow for the development of timing-predictable em-
bedded systems. CPAL can be used in a simulation mode
early in the early design phases, or, in real-time mode, to ex-
ecute programs on top of an OS or on a bare-metal platform.
CPAL serves to describe both the functional behavior of the
functions, that is their code, as well as the functional archi-
tecture of the system (i.e., the set of functions, how they are
activated, and the data flows among the functions). CPAL
is however not a full-fledged Architecture Description Lan-
guage able to describe complex system architectures, like
AADL [8] or Chariot [14] are, but a programming language
that can possibly be used to develop software components
from systems described in an ADL. As discussed in this pa-
per, in addition to the functional description, the developer
can also express timing-related non-functional concerns.

CPAL has been used in a number of academic and in-
dustrial case-studies, such as the development of a smart
parachute add-on component for UAVs [7] and an AU-
TOSAR compliant engine function [17], proposing an an-
swer to the Thales FMTV challenge [3] and developing a
simulation model of an automotive middleware on top of
Ethernet [15]. CPAL has also been used since 2013 as the
supporting language to teach Model-Driven Engineering for
embedded systems at the University of Luxembourg. The
CPAL documentation [11], graphical editor and the execu-
tion engine for Windows, Linux and Raspberry Pi platforms
are freely available from http://www.designcps.com. To
experiment with CPAL without any installation, a “play-
ground” is available on the web site along with code exam-
ples illustrating the language.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DSM’16, October 30, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4894-2/16/10...$15.00
http://dx.doi.org/10.1145/3023147.3023153

35

Why a New Domain-Specific Programming Language?
The design and development of embedded systems with de-
pendability constraints necessitates the adoption of many
good practices throughout the entire development cycle. The
need to develop a new language originates from our analy-
sis that none of the programming languages we were aware
of possessed all the features we think needed to combine
productivity and code correctness:

• General-purpose programming languages do not offer all
the right abstractions for today’s real-time embedded sys-
tems: scheduling periodic activities, time as a first class
citizen, safe inter-process communication, native support
for finite-state machines, high-level interfaces to I/Os,
support for timing and formal verification, etc. As an il-
lustration, just consider how cumbersome it is to program
in C a periodic activity on a real-time OS, let alone pro-
gramming a set of tasks with real-time constraints shar-
ing resources and synchronizing constraints. We note that
an alternative to developing a new language is to adapt,
by domain-specific extensions and restrictions, an exist-
ing language. In the field of embedded systems, this is
what has been with the mbeddr framework [19] which
is based on C. Such an approach has limits about what
can be done since the underlying language dictates many
things, but possesses advantages for instance in terms of
tool-set availability and ease of adoption by the program-
mers.

• Synchronous languages (Lustre [6], Signal[4], etc) are
meant for critical applications but they impose many
constraints and a programming style that is very spe-
cific and does not suit everyone. The initial learning
curve is steep too. In addition, many of the most ap-
pealing synchronous languages, such as Prelude [13] or
Giotto [10], are actually only Architecture Description
Languages (ADL) which means that the algorithms have
to be coded in an other language. An important benefit of
synchronous languages is that formal proof support, both
in the time domain and value domain, is usually avail-
able, whereas CPAL currently only offers schedulability
analysis to check for possible deadline misses (see [1])
and simulation.

• Correctness starts with simplicity: simplicity of the lan-
guage constructs, but also of the runtime environment.
The CPAL language is Turing complete but relatively
small in the number of constructs and abstractions it
defines, which facilitates the learning and teaching of
CPAL. Although code-generation is currently being in-
vestigated, CPAL is for the time being an interpreted lan-
guage whose execution engine is in the range of 10,000
lines of code (see §2.2). Especially when the execution
engine runs directly on the hardware, without an OS, the
amount of code involved is several order of magnitude

less than with compiled code which is of course makes it
easier to verify the code correctness.

The reader is referred to [12] and [2] for a more thorough
comparison with other programming languages and, more
generally, programming paradigms, especially those belong-
ing to the realm of synchronous approaches.

2. High-Level Abstractions for the Domain of
Critical Embedded Systems

The main objective of CPAL is to provide high-level ab-
stractions suited to express domain-specific patterns of be-
haviors and enforce the good programming practices of the
domain of embedded systems. In this Section, after an in-
troduction to CPAL and its development environment, we
focus on features related to time, introspection and interac-
tions with the hardware. Another requirement in the design
of CPAL has been to facilitate the writing of correct code.
For instance, there is no untyped data, no pointers, no dy-
namic memory after initialization, only simple control-flow
constructs, a loop over construct ensuring a bounded num-
ber of loop iterations, communication channels with LIFO or
FIFO semantics, etc. Some statements which are know to be
error-prone are also forbidden in CPAL, such as testing the
equality of two floating-point variables.

2.1 Basics of CPAL: Processes and Automata
We here first introduce the basic features of CPAL through
the example of a servo tester whose code is shown in Fig-
ure 1. At the core of CPAL is the concept of process which
is a built-in type for a recurrent activity of the system. Pro-
cesses can be seen as functions that are activated periodi-
cally, or when certain activation conditions are met. The pro-
cess is first defined (line 1 to 28 in in Figure 1), like a class
is in object-oriented languages, then it is instantiated with
certain activation conditions and global variables - possibly
mapped to I/O ports as in the servo tester example - as in-
put and output parameters (line 34 to 36 in Figure 1). Pro-
cesses can have arguments in input and output; here the servo
tester takes two input variables and outputs the servo signal.
Embedded in each process is a Finite-State Machine (FSM),
possibly reduced to a single state, that helps to describe the
logic of the process in a correct and non-ambiguous manner.

A process has a memory in the sense that, when it is
activated, it resumes in the state in which it was at the end
of the previous activation but the code of the state is not
executed at this point. A transition out of this state is first
taken if any can be, and only then the code of the current
state of the FSM is executed. A specific situation is the very
first execution of the process where it is assumed that a
dummy transition doing nothing leads to the process initial
state. After the execution of the state code, the execution of
the process is then finished and the CPU becomes available
for another process that is pending execution, the choice of
which by the execution engine depends on the scheduling

36

Figure 1. CPAL code implementing a servo tester as a pe-
riodic process. The logic is described as a FSM whose tran-
sitions between states are triggered by a Boolean condition
that evaluates to true, or after a certain time spent in a con-
tinuous manner in a state. The access to hardware is ab-
stracted through the use of global variables mapped onto the
I/O ports.

Figure 2. Graphical view of the FSM describing the logic
of the servo tester (screenshot from the CPAL-Editor).

parameters (see §2.4). The transition-first semantics allows
for faster response to external events and the transitions can
execute code in CPAL.

The CPAL language is fully textual but views are pro-
duced out of the code to inform the developers, and possibly
other stakeholders, about certain facets or behaviors of the
program. Currently, the CPAL-Editor building on Graphviz
is able to generate views of the FSMs in the processes, as
in Figure 2 for the servo tester example, a Gantt chart of the
process executions over time (see Figure 8) and a view of the
functional architecture, that is the set of processes making up
an application and the flows of data among them. In a first
phase of the project, we developed the prototype of a graph-
ical editor to specify the FSMs but decided to re-allocate the
engineering efforts to other areas more critical at this stage
of the project such as the timing correctness of the interpre-
tation engine. If a graphical editor could certainly be helpful
to some users, we believe that for users with prior program-
ming experience, the loss of productivity of writing textual
code is limited; the important thing in our view being that
the FSMs can be visualized.

2.2 Execution Environments and Execution Modes
During the development, the interpreter is executed from
within the CPAL-Editor. As soon as a change in the source
files is detected, the CPAL-Editor automatically parses, an-
alyzes and executes the code in background to generate the
views out of it. CPAL can also be executed in a co-simulation
environment. For the development of control systems, the
execution in Matlab/Simulink as an S-function is supported
(see [16]). CPAL is also the simulation language to program
high-level protocol layers in the RTaW-Pegase embedded
network simulator from RTaW. The CPAL code that is de-
ployed on a target is either launched from a shell or uploaded
in memory and executed immediately after the startup on
bare-metal platforms.

There are two execution modes in CPAL: the simulation
mode and the real-time mode. In the latter mode, the tim-
ing characteristics of the processes are respected (e.g., peri-
ods) and the programs can access I/O ports. Depending on
the platform, the execution engine runs on top of an OS (on
Linux, Windows, Mac OS X and Raspbian) or on the bare
hardware (Freescale FRDM-K64F). In simulation mode, the
code is executed as fast as possible, thus not in real-time,
and do not have access to the I/O ports. Through timing and
scheduling annotations (see Section 3), it is however possi-
ble to enforce a more timing-realistic behavior by simulating
execution times and possibly execution jitters. An interesting
feature of CPAL in terms of productivity is that the simula-
tion code can be re-used without changes in real-time mode
on a target, for rapid-prototyping or even for the production
system. All platforms possess both simulation and real-time
mode, except the FRDM-K64F board, which does not sup-
port the simulation mode. This platform however offers the
best real-time predictability in real-time mode since it does

37

Figure 3. Expressing, measuring and manipulating time
quantities in CPAL. Function sleep() suspends the ex-
ecution of a process during the specified duration and
time64.time() measures the time since the startup of the
interpreter with a picosecond accuracy.

not have the interferences from an OS. The reader is referred
to [11] for more information about the execution modes and
platforms capabilities.

2.3 Working with Time Durations
Performing actions at certain time points in time and being
able to express time quantities is a common need in embed-
ded programming. To measure and manipulate time quanti-
ties, CPAL possesses the native time64 data type. The time
units available are s, ms, us, ns, ps and Hz (Hertz). The lat-
ter unit is a natural unit in many applications to express the
rate of activation of activities. It can however only be used
for assignment and defining the periods of the processes, and
not for doing arithmetic on time quantities like the other time
units since the meaning of such operations would be unclear.
CPAL provides addition, subtraction and modulo operators
between time64 values and multiplication and division be-
tween time64 and uint64. The use of time64 quantities,
and the sleep() and time64.time() functions with the
usual semantics, is illustrated in Figure 3.

2.4 Introspection Mechanisms and Dynamic
Reconfiguration

The ability to implement adaptive behaviors requires that the
activities of an application can learn about themselves dur-
ing the execution. For this purpose, CPAL offers introspec-
tion features enabling to query at run-time the pid, period,
offset, priority, deadline and activation time of the current
and previous instance of any process. The example in Fig-
ure 4 shows a process detecting at run-time that its start-

Figure 4. Snippet of code showing how a process can detect
that its start-of-execution jitter is abnormally high. The code
in the common section is shared among all the states of a
process and will be executed before the state-specific code.

of-execution jitter is very high, which is detrimental to the
quality of control in many systems. The threshold condition
depends here on the actual rate of execution of the process,
which eases the portability and genericity of the code.

Once an abnormal timing behavior has been detected,
appropriate measures can be taken. First, a change in the
functioning mode of the application can be triggered, and
the FSMs embedded in the processes are well suited to de-
scribe applications with different modes and the transitions
between the modes. Another possibility is to adapt the char-
acteristics of the tasks and the quality of service offered
by the run-time environment. In CPAL, some characteristics
of the system can be reconfigured at run-time using (non-
functional) annotations to the code (see Section 3). For in-
stance, it is possible to change the rate of activation of a pro-
cess, increase its priority if Non-Preemptive Fixed-Priority
scheduling (NPFP) is used, or reduce its deadline if Non-
Preemptive Earliest-Deadline First (NPEDF) is used.

Another useful design pattern to detect unwanted condi-
tions occurring at run-time is to have a process dedicated to
the monitoring of the other processes or a subset of them.
Whenever needed, this supervision process can take appro-
priate measures, such as initiating an error recovery strategy
or a mode change.

2.5 Interacting with the Hardware
A domain-specific language for embedded systems should
offer a good support to the programmer for sensing and ac-
tuating operations. In CPAL, global variables can be mapped
to I/O ports to abstract the hardware from the programmer
point of view. By default, these I/O mapped variables used
by a process are updated in reading when the process starts
to execute, and in writing at the end of its execution. Some-
times, as in the example of Figure 5, it is however needed
to update I/O mapped variables during the execution of the
process, this can be done by an explicit call to IO.sync().

38

Figure 5. Update of the I/O ports through the use of the
IO.sync() function. I/O ports are transparently updated
when the process arguments are evaluated and upon the
completion of the process execution.

The synchronous languages we are aware of do not provide
such a possibility and impose a single write operation at the
end of execution.

The mapping between the global variables and the I/O
ports is in the version of CPAL available at the time of writ-
ing (version 1.15) achieved through a naming convention
(e.g., pin_gpio_c10_in in Figure 1). To ease the porta-
bility of CPAL applications to new platforms and the use
of new I/Os, we have started extending the annotations
mechanisms in CPAL to hardware annotations with a new
@cpal:hardware annotation with is for instance used to
configure communication over UDP. In the spirit, this anno-
tation scheme is similar to the one in SenseDSL [5].

3. A Clear Separation Between Functional
and Non-Functional Concerns

The correctness of a real-time application is twofold. First,
the results of the computation must be correct which is called
the correctness in the value domain. Second, the timing be-
havior of the application must be correct too, this is the cor-
rectness in the time domain. Typically, the latter involves that
deadlines must be met and jitters occurring at run-time (i.e.,
process start-of-execution and end-of-execution jitters) must
be kept within acceptable bounds. Timing is an important
non-functional concerns but there are other dimensions of
importance in CPS such as power consumption, security and
safety. We discuss hereafter the timing concerns which have
been the focus of CPAL until now.

In CPAL, functional and non-functional concerns are de-
coupled. The non-functional concerns are expressed in anno-
tations, placed inside or outside the code, as the programmer
decides it, but anyway well identified as not belonging to the
code itself. In simulation mode (see §2.2), the annotations
are used for instance to experiment scheduling strategies or
reflect the processing power of different execution platforms.
The same code can be re-used in real-time execution mode
at a later stage, but then, many annotations will be ignored.
Typically this is the case for the annotations describing the
execution time of the code, that are used in simulation to ob-

Figure 6. Timing annotations used in simulation to cap-
ture the execution times observed at run-time. The Mat-
lab/Simulink port of CPAL [16] enables to re-inject these
delays in the control loops for the design of timing-sensitive
controllers.

tain a more timing-realistic behavior as shown in the Ganttt
diagram of Figure 8.

3.1 Simulating Execution Times
In simulation mode, it is possible to take into account the
time it takes to execute the code of a process through a
@cpal:time annotation. The execution time can be ex-
pressed at the level of a state (see lines 4-6 in Figure 6), the
level of a block (called named block in CPAL, see lines 11-
15 in Figure 6) or globally. In the later case, the annotation
is defined at the global scope for each instance of a process
and holds whatever the state in which this instance of the
process is. The execution time can be static or dynamic, it
can depend on the value of a condition (as on line 24 in
Figure 6) or it can be the result of a computation. Annota-
tions are implemented as blocks of code that are evaluated
immediately before the activation of the processes.

State-level and block-level annotations obey the same
logic but cannot be used interchangeably as they may re-
sult in different timing behavior. With state-level annota-
tions, all code statements belonging to the state are exe-
cuted at the time of the entry in the state; the time being
only incremented by the execution time upon the exit of the
state. Whereas with block-level annotations, the time is in-
cremented upon the exit of the block, which means that the

39

remaining instructions coming afterward will be executed at
the new value of time. Block-level annotations can be used
in transitions too and permits a fine-grained timing charac-
terization of the code. In practice, the execution times in the
processes can be derived by monitoring the execution on the
target using the --stats option of the interpreter, or, for
more accuracy, with an oscilloscope. The later solution must
be used on a bare-metal platform. A set of execution time
annotations can be defined for each execution platform.

3.2 Simulating Release Jitters
In many systems, due for instance to limited time accuracy
or runtime overhead, tasks will not be released and ready
to execute exactly when they are scheduled to be. A certain
delay, called release jitter, may happen and vary from a task
instance to the next. This can be modeled in CPAL using
a @cpal:time annotation as illustrated in the code snippet
below.

Although formally the release jitter is something different
from the start-of-execution jitter seen in §4 that is mainly
caused by the execution of higher priority processes, the
release jitter annotation can be used to aggregate all the
latencies created by the other processes at early stages of
the development process when the other processes are not
precisely known.

Figure 7. Process release jitters can be reproduced in sim-
ulation through an annotation. The value of the jitters is set
individually for each process instance. A timing annotation
at the global scope suffixed by the name of a process like
here will be executed before each activation of the process
while, without the suffix, it will only be executed once at
program startup.

3.3 Specifying Scheduling Policies
The default CPAL scheduling policy is FIFO: processes are
executed in the order of their release. Although FIFO per-
forms rather poorly in terms of meeting deadlines (see [1]),
especially when there are tasks with large execution times,
it possesses a unique property among all non-idling poli-
cies: the execution order of the processes is the same what-
ever the execution time of the code, and thus whatever the
execution platform. This property called event-order deter-
minism ensures that simulated code will behave identically
to the deployed code with respect to execution order of the

Figure 8. Gantt diagram of the execution of the processes
defined in the code of Figure 6 (screenshot from the CPAL-
Editor).

“significant” events of the program (i.e., sensing and actuat-
ing points). CPAL provides also the Non-Preemptive Earliest
Deadline First (NPEDF) and Non-Preemptive Fixed Priority
scheduling policies (NPFP). Both policies require to set one
parameter per process, respectively the deadline and the pri-
ority. The scheduling policy and its parameters are defined
with a @cpal:time annotation, and they can be changed at
run-time depending on the functioning mode of the applica-
tion.

4. Ongoing Work
CPAL has been designed with two objectives related to non-
functional concerns which are driving the ongoing develop-
ments:

1. “State the what, not the how”: the idea is that the de-
veloper should state the permissible behavior of the pro-
gram, and a system synthesis step involving both anal-
ysis and optimization generates executable artifacts that
guarantee the requirements to be met. The feasibility of
this idea with respect to scheduling has been assessed
in [2, 18] but other dimensions such as power consump-
tion and dependability remains to be studied. A question
of particular interest in the targeted application domain
of CPAL is how an application can be made sufficiently
robust to respect a given safety level (e.g., SIL2) by in-
troducing at the synthesis step fault-tolerant mechanisms
such as for instance redundant executions or watchdog
mechanisms.

2. “Timing-equivalent behavior between simulation and ex-
ecution”: a program is executed and verified in simula-
tion mode on a workstation and the same program later
deployed on an embedded board executes with a timing-
equivalent run-time behavior. Timing-equivalence will
have different meanings depending on the applications
but this property would significant ease the design of
latency-sensitive applications such as control systems.
How to achieve such a property is a question currently

40

investigated in a PhD thesis in our group at the Univer-
sity of Luxembourg.

CPAL is currently being extended to multicore and dis-
tributed systems. The approach taken is to have one in-
terpreter per computational resource with synchronization
points between the interpreters when needed to ensure that
all interpreters have a consistent view of the system. This
approach has been validated on the simulation of relatively
simple multicore systems and networks but its efficiency
on embedded targets and more complex simulation mod-
els remains to be ascertained. Although model interpretation
brings benefits [17] and is suited for many applications, it
does not cover all use-cases mainly because of the slow-
down with respect to compiled code. We are considering
several approaches ranging from allowing “opaque” binary
functions to be called from CPAL code, like in the MAUDE
language [9], to partial or complete code generation. Finally,
we are currently extending CPAL in the domain of commu-
nication to better support IoT applications.

Acknowledgments
CPAL has been a team effort since its development started
in 2012. The authors wish to thank all contributors to CPAL,
especially Lionel Havet and Julien Rische from RTaW who
have been the main developers of the interpretation engine.

References
[1] S. Altmeyer, S. Manikandan Sundharam, and N. Navet. The

case for FIFO real-time scheduling. Technical report, Univer-
sity of Luxembourg, 2016.

[2] S. Altmeyer and N. Navet. Towards a declarative modeling
and execution framework for real-time systems. SIGBED
Rev., 13(2):30–33, April 2016.

[3] S. Altmeyer, N. Navet, and L. Fejoz. Using CPAL to model
and validate the timing behaviour of embedded systems.
In Proc. 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WA-
TERS), Lund, Sweden, July 2015.

[4] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous
programming with events and relations: the SIGNAL lan-
guage and its semantics. Science of Computer Programming,
16(2):103 – 149, 1991.

[5] C. Berger. SenseDSL: Automating the integration of sen-
sors for mcu-based robots and cyber-physical systems. In
Proc.14th Workshop on Domain-Specific Modeling, DSM ’14,
pages 41–46, New York, NY, USA, 2014. ACM.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUS-
TRE: A declarative language for real-time programming. In
Proc. 14th ACM Symposium on Principles of Programming
Languages, POPL ’87, pages 178–188, New York, NY, USA,
1987. ACM.

[7] L. Ciarletta, L. Fejoz, A. Guenard, and N Navet. Develop-
ment of a safe CPS component: the hybrid parachute, a re-
mote termination add-on improving safety of UAS. In Proc.
Embedded Real-Time Software and Systems (ERTSS’16), Jan-
uary 2016.

[8] P. H. Feiler, B. A. Lewis, and S. Vestal. The SAE Architec-
ture Analysis & Design Language (AADL) a standard for en-
gineering performance critical systems. In Proc. 2006 IEEE
Conference on Computer Aided Control System Design, pages
1206–1211, Oct 2006.

[9] N. Gobillot, C. Lesire, and D. Doose. A Modeling Framework
for Software Architecture Specification and Validation, pages
303–314. Springer, 2014. Proc. SIMPAR 2014.

[10] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a
time-triggered language for embedded programming. Pro-
ceedings of the IEEE, 91(1):84–99, 2003.

[11] N Navet and L. Fejoz. The CPAL Programming Language,
September 2016. version 1.06, Available at https://www.
designcps.com/wp-content/uploads/cpal-intro.pdf.

[12] N. Navet, L. Fejoz, L. Havet, and S. Altmeyer. Lean model-
driven development through model-interpretation: the CPAL
design flow. In Proc. Embedded Real-Time Software and
Systems (ERTSS ’16), January 2016.

[13] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens.
Multi-task implementation of multi-periodic synchronous
programs. Discrete Event Dynamic Systems, 21(3):307–338,
2011.

[14] S. Pradhan, A. Dubey, A. Gokhale, and M. Lehofer. CHAR-
IOT: A domain specific language for extensible cyber-
physical systems. In Proc. Workshop on Domain-Specific
Modeling, DSM 2015, pages 9–16, 2015.

[15] J. R. Seyler, T. Streichert, M. Glaß, N. Navet, and J. Teich.
Formal analysis of the startup delay of some/ip service dis-
covery. In Proc. 2015 Design, Automation & Test in Europe
Conference & Exhibition, DATE ’15, pages 49–54, 2015.

[16] S. M. Sundharam, S. Altmeyer, L. Havet, and N. Navet. A
model-based development environment for rapid-prototyping
of latency-sensitive control software. In Proc. 2016 Sixth In-
ternational Symposium on Embedded Computing and System
Design (ISED), Patna, India, December 2016.

[17] S. M. Sundharam, S. Altmeyer, and N. Navet. Model interpre-
tation for an AUTOSAR compliant engine control function.
In Proc. 7th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WA-
TERS), Toulouse, France, July 2016.

[18] S. M. Sundharam, S. Altmeyer, and N. Navet. Poster abstract:
An optimizing framework for real-time scheduling. In Proc.
2016 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), April 2016.

[19] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. Mbeddr: An
extensible C-based programming language and ide for em-
bedded systems. In Proc. 3rd Annual Conference on Sys-
tems, Programming, and Applications: Software for Human-
ity, SPLASH ’12, pages 121–140, 2012.

41

