CPAL: High-Level Abstractions for Safe
Embedded Systems

. = . .
Nicolas NAVET, University of Luxembourg
|| 'll - I || Loic FEJOZ, RealTime-at-Work RTaW

RealTime-at-Work

October 30, 2016 — DSM Workshop, Amsterdam

Software has become the key to mnovatlon

Amount of software is growing

exponentially -

productivity gains in software
development ?

Innovation increasingly relies on software

@ Model-Driven Development is a powerful
enabler but ..

Programming environments still lack

v the high-level concepts: embedded
system specific language abstractions

v' automation features ("state the what,
not the how") that would make them

. more productive
Lo
o]

what about

' CPAL : high-level programming

model for embedded systems

v'Allow to express non-functional
requirements, timing for now

v'Synthesis step ensures
requirements are met

e ——————————

& o
o\@gpired from posts at http://www.theenterprisearchitect.eu/]

'_ www.designcps.com @ @ 2

5-steps of MDD

Code only

Code

L, What's a
model?”

Code
visualization

Code

the model™

1
[|
visualize synchronize

,The code is

Runtime

Environment |

Matlab/Simulink

Scade

.

Model only

Model-
centric

A |
! generate
WY 1
Code Code
’(’:?ﬁgigi‘?j ,3’1“ he mod'ef,: L,Let's tcﬁf.@
] is the code models!
model’

Inspired from interpreter-based interlocking systems
e.g.. RATP. SNCF [4], Westingshouse

Figure from [2] and [3]

o0 0

www.designcps.com

ONO)

CPAL is a real-time embedded systems specific language

Model and program
functional and non-functional concerns

B Simulate

possibly embedded within external tools such as RTaW- PegaseTM and

I\/IatIab/S|muI|nk o
B-:E“:':—‘I:u:_co:z?he, eruisacontroiz.a:
e
C
bare metal or hosted by an OS - prototypes or real systems
RTaw [Ajont project of Reamime-at-workand] .1
oS, BTN o University of Luxembourg since 2012 UNIVERSITE DU
..Q\Q‘s
o
N www.designcps.com @ @ 4

CPAL : views created out of the code

Eile
Ar

Edition

Functional view

Display Run 7

cture | Tasks

[Mew [medi2014

I | ces.cpal |

Flight_Application_Software

pde [100ms]

d I | challengel -sim1-adapted.cpal | fas.cpal

7

/* Failure Detection Isclation and Recovery */
processdef FDIR{in bool: gyro, in bool: gps, i
state Main {
o3.push (true) ;
}
¥

-— flot montant */

/* Guidance and navigation

processdef GNC_US(in channel<bool>»: fdir, out
state Main {
var uint32: i = 0;
while (i < 10) {
assert (fdir.notEmpty()) 7
£air.pop () 7
i= i falz
' . .
assert (fdir.isEmpty ()7
H
3
/* Guidance and navigation -— flot descendant
- processdef GNC_DS(in bool: il, out bool: pde,

state Main {

on (is_on) on ('is_on)

n (s on)

Finite State Machine describing
the logic of a process

Tasks |
8, o

£

in bool:

bool: 02)

Code

n bool: star,
bool: o1, out
7

out bool:sgs,

out bool:

gncus, ou

I

{

pws) {

diy wouy ajgejieny

p//

wo09°sddusisd

Activation of the processes over ti

3
®

http://designcps.com/

CPAL language design objectives

Facilitating the writing of correct embedded code

Speeding up the development through domain-specific abstractions for:
Periodic activities and real-time scheduling

Time measurements and manipulation

Finite state machines

High-level interfaces to I/Os

@R O @ =G -0

etc

“Write once, Run Anywhere” with equally acceptable timing behaviour on
different platforms

www.designcps.com @ @

Facilitating the writing of correct code/system

Designed with simplicity in mind - small and readable language
Strongly typed language: conversions must be explicit
No dynamic memory & no pointers

Built-in loop over construct to prevent “off-by-one” errors when iterating over
collections

Testing the equality of floating-point numbers is forbidden

All processes are known before run-time - workload is bounded

Built-in code execution time monitoring support

Can run on bare hardware without OS

Utilities: schedulability analysis, code formatter and naming convention verifier

truct Item {
uint32: quantity,

Domain-specific constructs

www.designcps.com @ @

Hello, World

processdef Hello World()
h state Main {
I0.println("Hello, world");
I
I

process Hello World: a task[1@@ms]();

n
" processdef Servo_Tester(

% in bool: change_mode_cmd,

% din uintl6: manual_position,

Qut int32: position)
R e Y e

{

state Manual { ‘/ Tran5|t|0n
position = int32.as(manual_position) + int32.FIRST;

N) first semantics
on (change_mode_cmd) to Neutral; °
) v Codein

transitions and
states

state Neutral {
position = 8;

}
on (change_mode_cmd) to Auto_Min;
Manual

state Auto Min {

position = int32.FIRST;
on (change mode_cmd)
on (change mode_cmd) to Manual;
after (1s) to Auto_Max;

Neutral

on (change _mode_cmd)

state Auto Max {
position = int32.LAST;
I
on (change mode emd) to Manual;
after (1s) to Auto_Min;
T

on (change mode_cmd) on (change mode_cmd)

Auto_Min
svar bool: pin_gpio_cl@_in;

s var uint16: pin_adcl6e_8_1;

svar int32: pum_c_0_8;

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEESR
process Servo_Tester: main_task[166ms](pin_gpio_c1@ _in,
pin_adcle_8_1,
pum_c_©_@);

Auto_Max

Working with time

const time6d: sleep_time = 3ms;

processdef Manipulating Time() {
/* Internal granularity of time is picosecond (ps) */
var time64: a_duration = 5s + 158ms + 3ns + 1ps;
var time64: same_duration = 5s5158ms3nslps;
~ time6d:

J

~ time6d:

state A {
I0.println("Value of a_duration is %t", a_duration);
assert(ls == 1888ms
assert(lms == 1888us
assert(lus == 188@ns
assert(lns == 1888ps
e e = = =T
LE%E%E(SlE?E:tlmE}j
T = tImebd. time(T;
assert(tl - t8 >= sleep time);

}

)
)
)
)

3
3
H
3

time64d type
to measure and
manipulate time -

granularity is
picosecond

Units: s, ms,
us, ps and Hz

ns,

}

process Manipulating Time: pl[1@@ms]();
process Manipulating Time: p2[8.1Hz]();

11

Designer’s objective: model behaves
as the real-system

Development i
. “digital mockups” :
S — . “digital twins”
iming Accurate :
Simulator 0 e b Wl e i L :
g o
£ A Inject delays in simulation mode so
=] - - D ° °
- ET—- - :&;é"’ as to reproduce the time it tal_«?s
Engine to execute the code on a specific
platform

ol B[00
°>Q°
www.designcps.com @ @ 12

1 processdef Varying Execution_Time()

Simulating execution time

state Statel {
p1.5tatel [0 - 15ms] ||| |

"@Eﬁ;i?%?&é'{ “

Statel.execution_time = 15ms; E i

a7

a_named_block: {
@cpal:time {
block.execution time = 35ms;

ﬂgl

processdef Conditional Execution Time()

i { T T T
o
= o ™ i

state Main
@ecpal:time {

if (uintlé.rand uniform(@,2)= . . .
Main.execution time = lms; v" Annotations for real-time scheduling and

e el activation patterns others than periodic
) : v Delays can be obtained from runtime

monitoring

o\‘: : : X
33 process Varying_Execution_Time: pl[7@8ms](); .
"34 process Conditional Execution_Time: pz[mems]\e/)v\;/w.deygncps.com 13

Co-simulation in Matlab/Simulink® [7]

D riVi ng L] Function Block Parameters: CPAL controller El|
° S-Function (mask) -
scenarios |
Increment 4|—i e Parameters
Decrement 4#'““" desiredSpesd target =¢ || Model Name
st T [cruiseControlz.ast
Resume Jrﬁum CPAIt:mﬂlec:md throttie LI
Power|— Fmmc()ntrc)lIer oK I Cancel Help | Apply |
Brake J’ prate
speedUp — | vehicleSpeed tive
Sig“a'l Builder > drivaThm::ll:ﬂ.L Controller
(input and expected output) Throttle (%) Load (%)
vehicle ouput
Brake ratio Speed Tl s Actual and Expected
Speed Target
e Plant(vehicle)
029 Ongoing work: characterize HW resources required
:\Qo for timing correctness and ensure them at run-time

14

Interacting with hardware

bool: button, out bool: led)

{

* I0.sync() dimplicitly
state Main {
/* Some bit banging */
if (button) {
led = true; _
I0.pync(); /* Explicitly synchronizes I/0s #*/
sleep(258ms);

led = false;

process LED Control: blinker[S@8ms](pin2_in, pin@ out);

|Os are synced
upon the
activation and
exit of the
process, and
calls to
TO.sync ()

15

Introspection features

processdef Self_Adapting()

{
var time64: jitter_threshold = self.period * 3/2;
common{

Astrictly periodic process would star{ Fo_execute eyery pepiod X/

. - —
nglf.current_actlvatlon - self.previous activation > jitter threshol@l
i m— i — i — — — —

/* Warning: start-of-execution jitter is currently very high, possible
counter-measures that can be taken at run-time include adapting
1) the control algorithm (e.g. mode change),

2) the process activation pattern (e.g. increase period),

1=}

3) the scheduling parameters (e.g. increase process priority*/

Body of the process */
state A {
[® .. *,-".

}
}

process Self Adapting: pi[1@ems]();

Eases
portability and
self-adaptive
behaviour

16

www.designcps.com

Developing CPS: a smart parachute for UAV s

UAVs autopilots cannot be trusted —
minimal safety through a remote termination
component
Joint project with Alerion company

on (inEmergencyState)

.--',m'm‘- s Termination upon

afier (1s) — |oss of connection or
pilot’s decision

[Stoppingﬁmd Deploy ingj

after (2 * self.period)

Q\Q

\ 18

Software architecture

On-board module

|

Communicatiori

[DC p_xbeeTask [SO0m s]j

“\

rcp_emergencyCommand

'

4

rcp_modeTask [50ms]
L——[_-_-_[____: _______________

rcp_emergencyActivated

rcp_hwTask [20ms]

(ncp_uiTask [2()01113]) ::
il

Pt T SN

rcp_inEmergencyLED

rcp_powerLED Ep_ic

rcp_powerSwitch

rcp_servo

19

Executable requirements

processdef R40bserver (
in bool : pilotHasPressedTheButton,
in bool : parachuteDeployed)

OK {
state 0K {

. }
en (pilotHasPressedTheButton) on (pilotHasPressedTheButton)

 J to EmergencyRequired;
[%mmgmmﬂkﬂMﬁ%j state EmergencyRequired {
}
=== H after (1430ms) if (not parachuteDeployed)
aftcli (1430ms) Ilf (not parachuteDeployed) to Fail :
e | state Fail {
/* println("R4 FAILED"); */
assert(false);

¥
¥

=

v Actual max. latency depends on the ground speed target, the
minimum acceptable altitude, the weight of the UAS and the
¢ characteristics of the parachute (opening time, lift, etc)

54 20

Model-based fault-injection

-l R4 satisfaction ratio
e gyerage time (s)

minimum time (s)
== maximum time (s}

100.00%:

| Time for the parachute to deploy (in seconds) and satisfaction of
S requirement Réwersusmetweork quality ratio[5]

ol
o o -

21

Ongoing & future work

Upcoming releases: HW annotations, multi-core & power mode support
Code generation and/or hook to native code for higher performances
CPAL: MDD for loT
Medium term:

o timing equivalence between simulation and execution

o “State the what, not the how” for energy & safety

o SlLx qualification for the execution engine

CPAL is free to use

Want to give it a try? Binaries,
code examples and playground

at https://designcps.com

https://designcps.com/

References

1. N.Navet N, L. Fejoz L., L. Havet, S. Altmeyer, “Lean Model-Driven Development through Model-Interpretation:
the CPAL design flow”, Embedded Real-Time Software and Systems (ERTS 2016), January 2016.

2. A.Brown, “An Introduction to Model Driven Architecture — Part1l: MDA and today’s systems”, IBM technical
library, 2004.

3. T Trew, “Creating Embedded Platforms with MDA: Where's the Sweet Spot”, slides presented at ECMDA-FA,
20009.

4. M. Antoni, “Formal validation method and tools for computerized interlocking system”, 18th International
Symposium on Formal Methods (FM 2012), Industry day, August 27-31, 2012.

5. L. Ciarletta, L. Fejoz, A. Guenard, N. Navet, "Development of a safe CPS component: the hybrid parachute, a
remote termination add-on improving safety of UAS", Embedded Real-Time Software and Systems (ERTS 2016),
Toulouse, France, January 27-29, 2016.

6. S.Altmeyer, N. Navet, L. Fejoz, "Using CPAL to model and validate the timing behaviour of embedded systems",
6th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), Lund, Sweden, July 7, 2015.

7. S. M. Sundharam, S. Altmeyer, L. Havet, and N. Navet, “A model-based development environment for rapid-
prototyping of latency-sensitive control software”, in Proc. 2016 Sixth International Symposium on Embedded

o infC‘;)mputing and System Design (ISED), Patna, India, December 2016.

o)
o o]

\\ 24

http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd

