
Design, Simulate, Execute Embedded Systems 

CPAL: High-Level Abstractions for Safe 
Embedded Systems

Nicolas NAVET, University of Luxembourg

Loïc FEJOZ, RealTime-at-Work 

October 30, 2016 – DSM Workshop, Amsterdam



www.designcps.com 2

Amount of software is growing 
exponentially – what about 

productivity gains in software 
development  ?

Software has become the key to innovation

Model-Driven Development  is a powerful 
enabler but ..   

Programming environments still lack 

 the high-level concepts: embedded 
system specific language abstractions

 automation features ("state the what, 
not the how") that would make them 
more productive

Innovation increasingly relies on software 

[inspired from posts at http://www.theenterprisearchitect.eu/]

CPAL : high-level programming 
model for embedded systems

Allow to express non-functional 
requirements,  timing for now 

Synthesis step ensures 
requirements are met
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5-steps of MDD Matlab/Simulink
Scade CPAL

Figure from [2] and [3] Inspired from interpreter-based interlocking systems 
e.g.: RATP, SNCF [4], Westingshouse



CPAL is a real-time embedded systems specific language
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Model and program  
functional and non-functional concerns

Simulate

possibly embedded within external tools such as RTaW-Pegase™ and 
Matlab/Simulink ™

Execute 

bare metal or hosted by an OS - prototypes or real systems

A

C

B

A joint project of RealTime-at-Work and 
University of Luxembourg since 2012 



CPAL : views created out of the code
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Functional view

Finite State Machine describing 
the logic of a process

Code

Activation of the processes over time
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http://designcps.com/


CPAL language design objectives 

www.designcps.com

1. Facilitating the writing of correct embedded code 

2. Speeding up the development through domain-specific abstractions for:

o Periodic activities and real-time scheduling

o Time measurements and manipulation

o Finite state machines

o High-level interfaces to I/Os

o etc

3. “Write once, Run Anywhere” with equally acceptable timing behaviour on 
different platforms
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Facilitating the writing of correct code/system

• Designed with simplicity in mind - small and readable language 

• Strongly typed language: conversions must be explicit

• No dynamic memory & no pointers

• Built-in loop over construct to prevent “off-by-one” errors when iterating over 
collections

• Testing the equality of floating-point numbers is forbidden

• All processes are known before run-time - workload is bounded

• Built-in code execution time monitoring support

• Can run on bare hardware without OS 

• Utilities: schedulability analysis, code formatter and naming convention verifier 
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Domain-specific constructs
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Hello, World
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FSM in processes
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 Transition
first semantics
 Code in 
transitions and 
states



Working with time
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time64 type 
to measure and 

manipulate time –
granularity is 
picosecond

Units: s, ms, ns, 

us, ps and Hz
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Designer’s objective: model behaves 

as the real-system
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Inject delays in simulation mode so 
as to reproduce the time it takes 
to execute the code on a specific 

platform 
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“digital mockups” 
“digital twins”



Simulating execution time 
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 Annotations for real-time scheduling and 
activation patterns others than periodic
 Delays can be obtained from runtime 
monitoring



Co-simulation in Matlab/Simulink® [7]
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vehicle ouput

CPAL 
controller

Driving 
scenarios

Ongoing work: characterize HW resources required 
for timing correctness and ensure them at run-time



Interacting with hardware
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IOs are synced 
upon the 

activation and 
exit of the 

process, and 
calls to 

IO.sync()
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Introspection features
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Eases 
portability and 
self-adaptive 

behaviour
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Use-Case
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Developing CPS: a smart parachute for UAV [5]
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UAVs autopilots cannot be trusted –
minimal safety through a remote termination 

component
Joint project with Alerion company  

Termination upon  
loss of connection or 

pilot’s decision  



Software architecture 
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On-board module

HW control

Communication

UI



Executable requirements
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 Actual max. latency depends on the ground speed target, the 
minimum acceptable altitude, the weight of the UAS and the 
characteristics of the parachute (opening time, lift, etc)



Model-based fault-injection
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Time for the parachute to deploy (in seconds) and satisfaction of 
requirement R4 versus network quality ratio[5]



Ongoing & future work
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o Upcoming releases: HW annotations, multi-core & power mode support 

o Code generation and/or hook to native code for higher performances

o CPAL: MDD for IoT

o Medium term: 

o timing equivalence between simulation and execution 

o “State the what, not the how” for energy & safety

o SILx qualification for the execution engine

CPAL is free to use



www.designcps.com 23

Thank you for your attention!

Want to give it a try? Binaries, 
code examples and playground 

at https://designcps.com

https://designcps.com/
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