
Design, Simulate, Execute Embedded Systems

CPAL: High-Level Abstractions for Safe
Embedded Systems

Nicolas NAVET, University of Luxembourg

Loïc FEJOZ, RealTime-at-Work

October 30, 2016 – DSM Workshop, Amsterdam

www.designcps.com 2

Amount of software is growing
exponentially – what about

productivity gains in software
development ?

Software has become the key to innovation

Model-Driven Development is a powerful
enabler but ..

Programming environments still lack

 the high-level concepts: embedded
system specific language abstractions

 automation features ("state the what,
not the how") that would make them
more productive

Innovation increasingly relies on software

[inspired from posts at http://www.theenterprisearchitect.eu/]

CPAL : high-level programming
model for embedded systems

Allow to express non-functional
requirements, timing for now

Synthesis step ensures
requirements are met

www.designcps.com 3

5-steps of MDD Matlab/Simulink
Scade CPAL

Figure from [2] and [3] Inspired from interpreter-based interlocking systems
e.g.: RATP, SNCF [4], Westingshouse

CPAL is a real-time embedded systems specific language

www.designcps.com 4

Model and program
functional and non-functional concerns

Simulate

possibly embedded within external tools such as RTaW-Pegase™ and
Matlab/Simulink ™

Execute

bare metal or hosted by an OS - prototypes or real systems

A

C

B

A joint project of RealTime-at-Work and
University of Luxembourg since 2012

CPAL : views created out of the code

www.designcps.com 5

Functional view

Finite State Machine describing
the logic of a process

Code

Activation of the processes over time

A
vailab

le
fro

m
h

ttp
://d

e
sign

cp
s.co

m

http://designcps.com/

CPAL language design objectives

www.designcps.com

1. Facilitating the writing of correct embedded code

2. Speeding up the development through domain-specific abstractions for:

o Periodic activities and real-time scheduling

o Time measurements and manipulation

o Finite state machines

o High-level interfaces to I/Os

o etc

3. “Write once, Run Anywhere” with equally acceptable timing behaviour on
different platforms

6

Facilitating the writing of correct code/system

• Designed with simplicity in mind - small and readable language

• Strongly typed language: conversions must be explicit

• No dynamic memory & no pointers

• Built-in loop over construct to prevent “off-by-one” errors when iterating over
collections

• Testing the equality of floating-point numbers is forbidden

• All processes are known before run-time - workload is bounded

• Built-in code execution time monitoring support

• Can run on bare hardware without OS

• Utilities: schedulability analysis, code formatter and naming convention verifier

www.designcps.com 7

www.designcps.com

Domain-specific constructs

8

Hello, World

www.designcps.com 9

FSM in processes

www.designcps.com 10

 Transition
first semantics
 Code in
transitions and
states

Working with time

www.designcps.com

time64 type
to measure and

manipulate time –
granularity is
picosecond

Units: s, ms, ns,

us, ps and Hz

11

Designer’s objective: model behaves

as the real-system

www.designcps.com

Inject delays in simulation mode so
as to reproduce the time it takes
to execute the code on a specific

platform

12

“digital mockups”
“digital twins”

Simulating execution time

www.designcps.com 13

 Annotations for real-time scheduling and
activation patterns others than periodic
 Delays can be obtained from runtime
monitoring

Co-simulation in Matlab/Simulink® [7]

www.designcps.com 14

vehicle ouput

CPAL
controller

Driving
scenarios

Ongoing work: characterize HW resources required
for timing correctness and ensure them at run-time

Interacting with hardware

www.designcps.com

IOs are synced
upon the

activation and
exit of the

process, and
calls to

IO.sync()

15

Introspection features

www.designcps.com

Eases
portability and
self-adaptive

behaviour

16

www.designcps.com

Use-Case

17

Developing CPS: a smart parachute for UAV [5]

www.designcps.com 18

UAVs autopilots cannot be trusted –
minimal safety through a remote termination

component
Joint project with Alerion company

Termination upon
loss of connection or

pilot’s decision

Software architecture

www.designcps.com 19

On-board module

HW control

Communication

UI

Executable requirements

www.designcps.com 20

 Actual max. latency depends on the ground speed target, the
minimum acceptable altitude, the weight of the UAS and the
characteristics of the parachute (opening time, lift, etc)

Model-based fault-injection

www.designcps.com 21

Time for the parachute to deploy (in seconds) and satisfaction of
requirement R4 versus network quality ratio[5]

Ongoing & future work

www.designcps.com 22

o Upcoming releases: HW annotations, multi-core & power mode support

o Code generation and/or hook to native code for higher performances

o CPAL: MDD for IoT

o Medium term:

o timing equivalence between simulation and execution

o “State the what, not the how” for energy & safety

o SILx qualification for the execution engine

CPAL is free to use

www.designcps.com 23

Thank you for your attention!

Want to give it a try? Binaries,
code examples and playground

at https://designcps.com

https://designcps.com/

References

www.designcps.com 24

1. N. Navet N., L. Fejoz L., L. Havet , S. Altmeyer, “Lean Model-Driven Development through Model-Interpretation:
the CPAL design flow”, Embedded Real-Time Software and Systems (ERTS 2016), January 2016.

2. A. Brown, “An Introduction to Model Driven Architecture – Part1: MDA and today’s systems”, IBM technical
library, 2004.

3. T. Trew, “Creating Embedded Platforms with MDA: Where's the Sweet Spot”, slides presented at ECMDA-FA,
2009.

4. M. Antoni, “Formal validation method and tools for computerized interlocking system”, 18th International
Symposium on Formal Methods (FM 2012), Industry day, August 27-31, 2012.

5. L. Ciarletta, L. Fejoz, A. Guenard, N. Navet, "Development of a safe CPS component: the hybrid parachute, a
remote termination add-on improving safety of UAS", Embedded Real-Time Software and Systems (ERTS 2016),
Toulouse, France, January 27-29, 2016.

6. S. Altmeyer, N. Navet, L. Fejoz, "Using CPAL to model and validate the timing behaviour of embedded systems",
6th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), Lund, Sweden, July 7, 2015.

7. S. M. Sundharam, S. Altmeyer, L. Havet, and N. Navet, “A model-based development environment for rapid-
prototyping of latency-sensitive control software”, in Proc. 2016 Sixth International Symposium on Embedded
Computing and System Design (ISED), Patna, India, December 2016.

http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd

