
Design, Simulate, Execute Embedded Systems

CPAL: High-Level Abstractions for Safe
Embedded Systems

Nicolas NAVET, University of Luxembourg

Loïc FEJOZ, RealTime-at-Work

October 30, 2016 – DSM Workshop, Amsterdam

www.designcps.com 2

Amount of software is growing
exponentially – what about

productivity gains in software
development ?

Software has become the key to innovation

Model-Driven Development is a powerful
enabler but ..

Programming environments still lack

 the high-level concepts: embedded
system specific language abstractions

 automation features ("state the what,
not the how") that would make them
more productive

Innovation increasingly relies on software

[inspired from posts at http://www.theenterprisearchitect.eu/]

CPAL : high-level programming
model for embedded systems

Allow to express non-functional
requirements, timing for now

Synthesis step ensures
requirements are met

www.designcps.com 3

5-steps of MDD Matlab/Simulink
Scade CPAL

Figure from [2] and [3] Inspired from interpreter-based interlocking systems
e.g.: RATP, SNCF [4], Westingshouse

CPAL is a real-time embedded systems specific language

www.designcps.com 4

Model and program
functional and non-functional concerns

Simulate

possibly embedded within external tools such as RTaW-Pegase™ and
Matlab/Simulink ™

Execute

bare metal or hosted by an OS - prototypes or real systems

A

C

B

A joint project of RealTime-at-Work and
University of Luxembourg since 2012

CPAL : views created out of the code

www.designcps.com 5

Functional view

Finite State Machine describing
the logic of a process

Code

Activation of the processes over time

A
vailab

le
fro

m
h

ttp
://d

e
sign

cp
s.co

m

http://designcps.com/

CPAL language design objectives

www.designcps.com

1. Facilitating the writing of correct embedded code

2. Speeding up the development through domain-specific abstractions for:

o Periodic activities and real-time scheduling

o Time measurements and manipulation

o Finite state machines

o High-level interfaces to I/Os

o etc

3. “Write once, Run Anywhere” with equally acceptable timing behaviour on
different platforms

6

Facilitating the writing of correct code/system

• Designed with simplicity in mind - small and readable language

• Strongly typed language: conversions must be explicit

• No dynamic memory & no pointers

• Built-in loop over construct to prevent “off-by-one” errors when iterating over
collections

• Testing the equality of floating-point numbers is forbidden

• All processes are known before run-time - workload is bounded

• Built-in code execution time monitoring support

• Can run on bare hardware without OS

• Utilities: schedulability analysis, code formatter and naming convention verifier

www.designcps.com 7

www.designcps.com

Domain-specific constructs

8

Hello, World

www.designcps.com 9

FSM in processes

www.designcps.com 10

 Transition
first semantics
 Code in
transitions and
states

Working with time

www.designcps.com

time64 type
to measure and

manipulate time –
granularity is
picosecond

Units: s, ms, ns,

us, ps and Hz

11

Designer’s objective: model behaves

as the real-system

www.designcps.com

Inject delays in simulation mode so
as to reproduce the time it takes
to execute the code on a specific

platform

12

“digital mockups”
“digital twins”

Simulating execution time

www.designcps.com 13

 Annotations for real-time scheduling and
activation patterns others than periodic
 Delays can be obtained from runtime
monitoring

Co-simulation in Matlab/Simulink® [7]

www.designcps.com 14

vehicle ouput

CPAL
controller

Driving
scenarios

Ongoing work: characterize HW resources required
for timing correctness and ensure them at run-time

Interacting with hardware

www.designcps.com

IOs are synced
upon the

activation and
exit of the

process, and
calls to

IO.sync()

15

Introspection features

www.designcps.com

Eases
portability and
self-adaptive

behaviour

16

www.designcps.com

Use-Case

17

Developing CPS: a smart parachute for UAV [5]

www.designcps.com 18

UAVs autopilots cannot be trusted –
minimal safety through a remote termination

component
Joint project with Alerion company

Termination upon
loss of connection or

pilot’s decision

Software architecture

www.designcps.com 19

On-board module

HW control

Communication

UI

Executable requirements

www.designcps.com 20

 Actual max. latency depends on the ground speed target, the
minimum acceptable altitude, the weight of the UAS and the
characteristics of the parachute (opening time, lift, etc)

Model-based fault-injection

www.designcps.com 21

Time for the parachute to deploy (in seconds) and satisfaction of
requirement R4 versus network quality ratio[5]

Ongoing & future work

www.designcps.com 22

o Upcoming releases: HW annotations, multi-core & power mode support

o Code generation and/or hook to native code for higher performances

o CPAL: MDD for IoT

o Medium term:

o timing equivalence between simulation and execution

o “State the what, not the how” for energy & safety

o SILx qualification for the execution engine

CPAL is free to use

www.designcps.com 23

Thank you for your attention!

Want to give it a try? Binaries,
code examples and playground

at https://designcps.com

https://designcps.com/

References

www.designcps.com 24

1. N. Navet N., L. Fejoz L., L. Havet , S. Altmeyer, “Lean Model-Driven Development through Model-Interpretation:
the CPAL design flow”, Embedded Real-Time Software and Systems (ERTS 2016), January 2016.

2. A. Brown, “An Introduction to Model Driven Architecture – Part1: MDA and today’s systems”, IBM technical
library, 2004.

3. T. Trew, “Creating Embedded Platforms with MDA: Where's the Sweet Spot”, slides presented at ECMDA-FA,
2009.

4. M. Antoni, “Formal validation method and tools for computerized interlocking system”, 18th International
Symposium on Formal Methods (FM 2012), Industry day, August 27-31, 2012.

5. L. Ciarletta, L. Fejoz, A. Guenard, N. Navet, "Development of a safe CPS component: the hybrid parachute, a
remote termination add-on improving safety of UAS", Embedded Real-Time Software and Systems (ERTS 2016),
Toulouse, France, January 27-29, 2016.

6. S. Altmeyer, N. Navet, L. Fejoz, "Using CPAL to model and validate the timing behaviour of embedded systems",
6th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), Lund, Sweden, July 7, 2015.

7. S. M. Sundharam, S. Altmeyer, L. Havet, and N. Navet, “A model-based development environment for rapid-
prototyping of latency-sensitive control software”, in Proc. 2016 Sixth International Symposium on Embedded
Computing and System Design (ISED), Patna, India, December 2016.

http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd
https://www.designcps.com/wp-content/uploads/CPAL-in-Simulink-ISED2016.pd

