
Using CPAL to model and validate
the timing behaviour of embedded systems

Sebastian Altmeyer, Nicolas Navet, Loı̈c Fejoz

FMTV Challenge - WATERS 2015 - Lund

Cyber Physical Action Language (CPAL)
I C-like intuitive language (with automata and real-time

abstractions)

I model functional and temporal behaviour of CPS

I simulate CPS (both types of behaviour)

(still under development)
1 / 11

The challenging part of the challenge

I not a standard scheduling problem
I hidden ambiguity in the model
I pen & paper solutions seemed trivial

How to solve the challenge with CPAL

I low effort to model the challenge
I quick simulation results
I explicit dis-ambiguity

(yet, simulation , formal verification)

2 / 11

CPAL Model of Challenge 1

struct Frame {

uint32: id;

uint32: emission_time;

};

processdef T1_PreProcessor(

in channel<Frame>: input,

out channel<Frame>: output)

{

state Main {

/* removes reflections

normalizes intensity, etc. */

assert(input.notEmpty());

output.push(input.pop());

}

}

var queue<Frame>: cam_to_t1[1];

var queue<Frame>: t1_to_t2[1];

var Frame: t2_to_t3;

var queue<Frame>: t3_to_t4[n];

var queue<Frame>: t4_to_monitor[1];

process T1_PreProcessor:

t1[cam_to_t1.notEmpty()](cam_to_t1, t1_to_t2);

@cpal:time {

t1.execution_time = 28ms;

}

...

3 / 11

Explicit Disambiguation

I task release times
I mutable or immutable clock drifts
I clock drift distribution
I execution time distribution

4 / 11

always the least-favorable configuration chosen

Simulation of Challenge 1A

n = 1

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 80
 90

 100
 110

 120
 130

 140
 150

Fr
e
q
u
e
n
cy

Latency

n = 3

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 80
 100

 120
 140

 160
 180

 200
 220

Fr
e
q
u
e
n
cy

Latency

I 108 frames in total simulated (in less than 8 hours)
I 103 release patterns, 105 frames per pattern
I mutable drifts
I normal distributions

5 / 11

Simulation vs. Pen & Paper

buffer (n) frame simulation pen & paper

min

1 1 63 ms 63 ms
1 > 1 89.7694 ms 89.6656 ms
3 1 63 ms 63 ms
3 > 1 90.0226 ms 89.6656 ms

max
1 - 144.9224 ms < 146 ms
3 - 222.9026 ms < 226 ms

Error in first pen & paper solution identified using simulation

6 / 11

Simulation of Challenge 1B

n = 1

 0

 0.05

 0.1

 0.15

 0.2

 0 10
 20

 30
 40

 50

Fr
e
q
u
e
n
cy

number of frames between two discarded frames

n = 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 3000

 3500

 4000

 4500

 5000

 5500

 6000

Fr
e
q
u
e
n
cy

number of frames between two discarded frames

I 108 frames in total simulated (in less than 8 hours)
I 103 release patterns, 105 frames per pattern
I immutable drifts, worst-case clock drifts
I normal distribution of exec time

7 / 11

Simulation of Challenge 1B: Observations

n = 1

 0

 0.05

 0.1

 0.15

 0.2

 0 10
 20

 30
 40

 50

Fr
e
q
u
e
n
cy

number of frames between two discarded frames

I minimal distance: 2
I overload situations
I lost frames very frequent

n = 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 3000

 3500

 4000

 4500

 5000

 5500

 6000

Fr
e
q
u
e
n
cy

number of frames between two discarded frames

I minimal distance > 3800
I no bursts
I two spikes

8 / 11

No pen & paper solution to 1B.

CPAL Model of Challenge 2

9 / 11

Simulation of Challenge 2

I CPAL simulation does not yet support pre-emption

I taskset T5,T6,T7 mutually non-pre-emptive
(simulation possible)

I taskset T5,T6,T7 treated as artificial task Tx:
I ⇒ reduction to standard response-time analysis!

10 / 11

Conclusions

CPAL doesn’t offer automated formal verification, but:

I intuitive modelling (< 4 hours for the both challenges)
I quick simulation (< 8 hours for all simulations)
I unambiguous description

Integration with formal verification tool future work.

