Using CPAL to model and validate
the timing behaviour of embedded systems

Sebastian Altmeyer, Nicolas Navet, Loic Fejoz

[ ]
mi.lu
ONVERSTY OF RTaw

LUXEMBOURG RealTime-at-Work

FMTV Challenge - WATERS 2015 - Lund



Cyber Physical Action Language (CPAL)
> C-like intuitive language (with automata and real-time
abstractions)
» model functional and temporal behaviour of CPS
» simulate CPS (both types of behaviour)

(still under development)

1/11



The challenging part of the challenge

» not a standard scheduling problem
» hidden ambiguity in the model
» pen & paper solutions seemed trivial

How to solve the challenge with CPAL

» low effort to model the challenge
» quick simulation results
» explicit dis-ambiguity

(yet, simulation # formal verification)
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CPAL Model of Challenge 1

struct Frame {
uint32: id;
uint32: emission_time;

};

processdef T1_PreProcessor(
in channel<Frame>: input,
out channel<Frame>: output)
{
state Main {
/* removes reflections
normalizes intensity, etc. */
assert(input.notEmpty());
output.push(input.pop(Q);

var queue<Frame>: cam_to_t1[1];

var queue<Frame>: tl_to_t2[1];

var Frame: t2_to_t3;

var queue<Frame>: t3_to_t4[n];

var queue<Frame>: t4_to_monitor[1];

process T1_PreProcessor:
tl[cam_to_tl.notEmpty()](cam_to_t1l, tl_to_t2);
@cpal:time {
tl.execution_time = 28ms;

}
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Explicit Disambiguation

v

task release times

v

mutable or immutable clock drifts
clock drift distribution
execution time distribution

v

v

always the least-favorable configuration chosen
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Simulation of Challenge 1A
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108 frames in total simulated (in less than 8 hours)
102 release patterns, 10° frames per pattern
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Simulation vs. Pen & Paper

| buffer (n) | frame |  simulation | pen & paper

1 1 63 ms 63 ms

min 1 > 1 89.7694 ms | 89.6656 ms
3 1 63 ms 63 ms

3 > 1 90.0226 ms | 89.6656 ms

max 1 - | 144.9224 ms <146 ms
3 - | 222.9026 ms <226 ms

Error in first pen & paper solution identified using simulation
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Simulation of Challenge 1B
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» 108 frames in total simulated (in less than 8 hours)
» 102 release patterns, 10° frames per pattern

» immutable drifts, worst-case clock drifts

» normal distribution of exec time
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Simulation of Challenge 1B: Observations
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» minimal distance: 2
» overload situations
» lost frames very frequent
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» minimal distance > 3800
» no bursts
» two spikes

No pen & paper solution to 1B.
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CPAL Model of Challenge 2

Tracking_&_camera_control
(17 [xc,m,cc.no(Emmy()D——(camcm [cam:mCmds.nolEmply()D

(scnm [100ms] T6 [sensorsSource.notEmpty()] TS [chchc.nolEmply()l)

T2 [40ms]
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Simulation of Challenge 2

v

CPAL simulation does not yet support pre-emption

Tracking_&_camera_control

(17 [IcJo,cc.nolEmply()]Hcamem [cnmemCmds.nolEmply()])

(scnsul s [uxyms])—p(To [sensorsSource.notEmpty( )D‘__’(TS [tc_to_tpe.notEmpty( ’D

T2 [40ms]

v

taskset T5, T6, T7 mutually non-pre-emptive
(simulation possible)

taskset T5, T6, T7 treated as artificial task Tx:
= reduction to standard response-time analysis!

v

v
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Conclusions

CPAL doesn’t offer automated formal verification, but:

» intuitive modelling (< 4 hours for the both challenges)
» quick simulation (< 8 hours for all simulations)
» unambiguous description

Integration with formal verification tool future work.



