Using CPAL to model and validate
the timing behaviour of embedded systems

Sebastian Altmeyer, Nicolas Navet, Loic Fejoz

[]
mi.lu
ONVERSTY OF RTaw

LUXEMBOURG RealTime-at-Work

FMTV Challenge - WATERS 2015 - Lund

Cyber Physical Action Language (CPAL)
> C-like intuitive language (with automata and real-time
abstractions)
» model functional and temporal behaviour of CPS
» simulate CPS (both types of behaviour)

(still under development)

1/11

The challenging part of the challenge

» not a standard scheduling problem
» hidden ambiguity in the model
» pen & paper solutions seemed trivial

How to solve the challenge with CPAL

» low effort to model the challenge
» quick simulation results
» explicit dis-ambiguity

(yet, simulation # formal verification)

2/11

CPAL Model of Challenge 1

struct Frame {
uint32: id;
uint32: emission_time;

};

processdef T1_PreProcessor(
in channel<Frame>: input,
out channel<Frame>: output)
{
state Main {
/* removes reflections
normalizes intensity, etc. */
assert(input.notEmpty());
output.push(input.pop(Q);

var queue<Frame>: cam_to_t1[1];

var queue<Frame>: tl_to_t2[1];

var Frame: t2_to_t3;

var queue<Frame>: t3_to_t4[n];

var queue<Frame>: t4_to_monitor[1];

process T1_PreProcessor:
tl[cam_to_tl.notEmpty()](cam_to_t1l, tl_to_t2);
@cpal:time {
tl.execution_time = 28ms;

}

L feam_to_t1_notEmpty()]

£2[11_to_z notTanpty)]

6_to_montor

3/11

Explicit Disambiguation

v

task release times

v

mutable or immutable clock drifts
clock drift distribution
execution time distribution

v

v

always the least-favorable configuration chosen

4/11

Simulation of Challenge 1A

Frequency
Frequency

P

9 P 2, 2 e < 2
v dJ % % > % % %

Latency

Latency

108 frames in total simulated (in less than 8 hours)
102 release patterns, 10° frames per pattern
mutable drifts

normal distributions

v

\{

v

v

5/11

Simulation vs. Pen & Paper

| buffer (n) | frame | simulation | pen & paper

1 1 63 ms 63 ms

min 1 > 1 89.7694 ms | 89.6656 ms
3 1 63 ms 63 ms

3 > 1 90.0226 ms | 89.6656 ms

max 1 - | 144.9224 ms <146 ms
3 - | 222.9026 ms <226 ms

Error in first pen & paper solution identified using simulation

6/11

Simulation of Challenge 1B

0.8
0.6

04

Frequency
Frequency

03

0.2

0.1

mm L , o
‘o 2 o K2 Yo % %
number of frames between two discarded frames number of frames between two discarded frames

% E? 3 9 3
2, %, , % 2,
o % % % % %

» 108 frames in total simulated (in less than 8 hours)
» 102 release patterns, 10° frames per pattern

» immutable drifts, worst-case clock drifts

» normal distribution of exec time

7/11

Simulation of Challenge 1B: Observations

Frequency

mn.
2 ‘% 2 3 K2 o
number of frames between two discarded frames

» minimal distance: 2
» overload situations
» lost frames very frequent

Frequency

n=3
0.8
07
0.6
05
0.4
0.3
0.2
0.1
0 .
B % % % B %

» minimal distance > 3800
» no bursts
» two spikes

No pen & paper solution to 1B.

%
2
K3

8/11

CPAL Model of Challenge 2

Tracking_&_camera_control
(17 [xc,m,cc.no(Emmy()D——(camcm [cam:mCmds.nolEmply()D

(scnm [100ms] T6 [sensorsSource.notEmpty()] TS [chchc.nolEmply()l)

T2 [40ms]

9/11

Simulation of Challenge 2

v

CPAL simulation does not yet support pre-emption

Tracking_&_camera_control

(17 [IcJo,cc.nolEmply()]Hcamem [cnmemCmds.nolEmply()])

(scnsul s [uxyms])—p(To [sensorsSource.notEmpty()D‘__’(TS [tc_to_tpe.notEmpty(’D

T2 [40ms]

v

taskset T5, T6, T7 mutually non-pre-emptive
(simulation possible)

taskset T5, T6, T7 treated as artificial task Tx:
= reduction to standard response-time analysis!

v

v

10/ 11

Conclusions

CPAL doesn’t offer automated formal verification, but:

» intuitive modelling (< 4 hours for the both challenges)
» quick simulation (< 8 hours for all simulations)
» unambiguous description

Integration with formal verification tool future work.

