
Article

A Model-Driven Co-design Framework for Fusing
Control and Scheduling Viewpoints

Sakthivel M Sundharam 1* ID , Nicolas Navet 1, Sebastian Altmeyer 2 ID and Lionel Havet 3

1 Laboratory of Advanced Software Systems (LASSY), CSC Research Unit, University of Luxembourg, Maison
du Nombre, L-4364 Esch-sur-Alzette, Luxembourg;
E-mails: sakthivel.sundharam@uni.lu; nicolas.navet@uni.lu

2 CSA Group, University of Amsterdam, 1098XH Amsterdam, Netherlands; altmeyer@uva.nl
3 RealTime-at-Work (RTaW), 4 Rue Piroux, 54000 Nancy, France; lionel.havet@realtimeatwork.com
* Correspondence: sakthivel.sundharam@uni.lu; Tel.: +352-466-644-5132

Academic Editor: name
Version February 8, 2018 submitted to Sensors

Abstract: Model-Driven Engineering (MDE) is widely applied in the industry to develop new1

software functions and integrate them into the existing run-time environment of a Cyber-Physical2

System (CPS). The design of a software component involves designers from various viewpoints such3

as control theory, software engineering, safety, etc. In practice, while a designer from one discipline4

focuses on the core aspects of his field (for instance, a control engineer concentrates on designing5

a stable controller), he neglects or considers less importantly the other engineering aspects (for6

instance, real-time software engineering or energy efficiency). This may cause some of the functional7

and non-functional requirements not to be met satisfactorily. In this work, we present a co-design8

framework based on timing tolerance contract to address such design gaps between control and9

real-time software engineering. The framework consists of three steps: controller design, verified by10

jitter margin analysis along with co-simulation, software design verified by a novel schedulability11

analysis, and the run-time verification by monitoring the execution of the models on target. This12

framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based13

on model-interpretation, which enforces a timing-realistic behavior in simulation through timing14

and scheduling annotations. The application of our framework is exemplified in the design of an15

automotive cruise control system.16

Keywords: model-driven engineering; control software; timing tolerance contract; controller model;17

schedulability; stability; input jitters; varying execution-times; output jitters; input-to-output delay;18

co-simulation; real-time scheduling; control system performance19

1. Introduction20

Control theory and software engineering are two disciplines involved in the development of21

control software. Traditionally, control engineers design the controller model without considering22

the computing platform constraints and specifications. The converse applies to software engineering,23

where control performance is not considered during software design. The control engineering and24

the software engineering are two different worlds with different objectives in mind. Consequently,25

the complete set of functional and non-functional requirements of the control software are usually26

not elicited at the control design stage. Hence, as discussed in [1], substantial design-gaps may exist27

during the design of a control software.28

The control software executes on an Electronic Control Units (ECU) interfaced with various29

sensors and actuators. The continuous-time signals are periodically sampled; each sampled set of data30

Submitted to Sensors, pages 1 – 26 www.mdpi.com/journal/sensors

http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/journal/sensors

Version February 8, 2018 submitted to Sensors 2 of 26

is then processed by real-time control functions. Control theory typically assumes deterministic and31

periodic sampling. However in practice, for instance, due to preemptions and varying task execution32

times, there exists a varying delay between sensing and actuation, which is called input-to-output33

delay or sensing-to-actuation delay. A control designer typically assumes this input-to-output delay34

to be zero or constant which is an unrealistic assumption. The input-to-output delay depends on the35

time at which sensing and actuation takes place. Sensing time may also vary over time typically due36

to the interference of higher priority tasks, and the variability of sensing times is called input jitter.37

There are also jitters in the actuation times, called output jitters caused by varying execution times and38

preemptions. These jitters directly impact the quality of control functions, and, in the worst-case, they39

might jeopardize the safety of the system. Hence, it is important to consider these delays during the40

design phase of the control software. This work addresses the case where the input data acquisition is41

done locally on one node. It can be extended like in TrueTime [2] to cover the case of networked control42

systems, including "Industrial Internet of Things" (IIoT) applications, where data are transmitted over43

a network, which would increase the input jitters, as well as the input-to-output delays.44

State-of-the-art45

A survey of tools and methods developed to address this problem is presented in [3]. Most of46

the techniques discussed in this survey are based on co-design approaches. Directly relevant to our47

work are TrueTime [2] and T-Res [4] which are simulation tools that can consider how the timing48

behavior of the implementation affects the performance of the control. Both approaches use Simulink49

for control design and timing extension toolboxes to include computing aspects, foremost the effects50

of task scheduling on the control performance. In a recent study [5], we discussed our co-design and51

simulation environment and compared it with these state-of-the-art tools. Our co-design technique52

mainly differs from these approaches by allowing the control model to be directly executed (by an53

interpreter engine) on the target hardware, without changing a single line of code. The benefits are54

reduced development time and avoidance of distortions (i.e., semantic gaps) between the simulated55

and executed control programs. On the other hand, TrueTime and T-Res are essentially simulation56

environments that involve a step of model-to-code transformation (typically code generation), which57

may risk widening the semantic gap between model and executable code, requiring additional58

development effort. Generally speaking, the existing co-design simulation techniques are mainly59

concerned with enabling the study of the effect of timing variabilities on control performance, rather60

than addressing the design gaps between control and software viewpoints. Other works [1,6] present61

co-engineering techniques where the initial controller is integrated in a virtual ECU. The behavior62

of the controller is then assessed through timing analysis tools whose results are injected into the63

controller model. This approach shares similarities with ours but it relies on expensive and proprietary64

timing analysis tools and remains at the model level (i.e. implementation is abstracted).65

Contribution66

In this paper, we propose a framework that supports our co-design modeling environment for67

both controller and control software development. The framework provides schedulability and control68

performance analysis along with simulation capabilities. We underpin the proposed framework with69

the help of timing contracts introduced in [7] which are sets of timing characteristics that ensure the70

targeted control performance. The timing contract can be a crucial concept in component-based design71

because it drives and synergizes the design thinking of the stakeholders from different viewpoints.72

We use the timing contract as a candidate to bridge the control software design-gaps. During the73

application of a timing contract, we observe a vertical type contract [8] in our proposed framework as74

the timing contract is applied between two phases of the Software Development Life Cycle (SDLC), in75

this case between controller design and software development.76

The co-design framework presented in this work encompasses three steps of the development77

cycle: (i) controller design, (ii) software scheduling and execution platform configuration, and (iii)78

Version February 8, 2018 submitted to Sensors 3 of 26

run-time monitoring. Firstly, we discuss scheduling and stability viewpoint analyses supporting79

the proposed co-design and simulation environment. We rely on our timing-aware model-driven80

environment called Cyber-Physical Action Language (CPAL) for co-design in Simulink. We then81

present the CPAL constructs and timing annotations, central to our approach, which enable us to82

reproduce the timing irregularities of interest, such as jitters and varying input-to-output delays.83

CPAL provides the timing dimension to the controller design, which acts on the plant model in84

Simulink. We provide the CPAL execution platform for Simulink as open access for experimentation.85

Along with existing jitter analysis tools, the proposed co-design platform helps designing stability86

guaranteed controller models by integrating the target-platform timing behavior. Furthermore, it87

provides software engineering with the control information needed to bound the space of feasible88

software design solutions. The stability verification itself is done with the help of the jitter margin89

concept and the co-simulation of CPAL execution in the Simulink environment.90

The second contribution is the verification of the timing tolerance contract assumptions made91

during controller design. The verification is specifically useful when a new control function is92

integrated into an existing stable and functioning ECU. How can we analytically validate whether the93

system maintains the desired performance (stable and schedulable) after integration? To this end, we94

propose a novel schedulability analysis for a certain class of task and execution models in real-time95

scheduling. To assign a realistic execution time to the controller task, we estimate the Worst-Case96

Execution Time (WCET) beforehand using measurements of the model running on the target hardware.97

The third and last contribution is the proposed run-time verification methodology. During model98

on target execution, we check whether the newly integrated controller function stays within the99

stability margin. For this, we take advantage of CPAL introspection features to monitor the execution100

characteristics of a controller model at run-time. More specifically, we introspect whether the jitters and101

input output latencies are within the margin guaranteeing the stability and schedulability objectives.102

Structure103

This paper is structured as follows. In Section 2, we explain the system model and the steps104

involved in the framework for fusing control and scheduling viewpoints. Section 3 presents the105

proposed co-modeling and simulation environment as well as jitter analysis tools and methods. In106

Section 4, we explain the verification of timing tolerance assumptions using WCET measurements and107

the schedulability analysis. In Section 5, we evaluate the framework using the example of a cruise108

control system. In the same section, we discuss the stability verification using the jitter margin concept109

and the CPAL co-simulation in Simulink. The section also details the scheduling configuration and110

run-time introspection features. Section 6 provides the related work. Section 7 concludes the paper.111

2. Framework for Fusing Control and Scheduling Viewpoints112

System designers in the industry are typically highly knowledgeable in their own fields (control113

systems, software engineering, scheduling, etc.) but contracts among design teams are not necessarily114

well established and communicated amongst the stakeholders. Our objective is to define a structured115

framework, with clear interfaces, which can be agreed upon and followed by all. The framework116

proposed in this section highlights the issues faced at each step of the design and we propose possible117

solutions. Our framework may not be suitable for all industrial settings, but it addresses the gap118

between control models and their implementation, and can serve as a basis for context-specific design119

frameworks.120

2.1. System Model121

We propose an integrated framework which combines the tools and methods necessary to design122

a model of the system. Table 1 provides a quick reference for the notations used in this paper. The123

system is comprised of a controller model, a plant model and platform model. Plant P is modeled by a124

continuous-time system of equations125

Version February 8, 2018 submitted to Sensors 4 of 26

ẋ = Ax + Bu,

y = Kx,
(1)

where x is the plant state and u is the control signal. The plant output y is sampled periodically with126

some delays at discrete time instants. The control signal is updated periodically with some delays at127

discrete time instants, (i.e., actuation also happens with some delay). Quantities A, B, K are constants.128

The controller model is comprised of a task set Γ of n periodic tasks {T1, . . . Tn} executing on a single129

processor.130

Table 1. Notations used in the paper

task-set Γ = {T1, . . . Tn}
pseudo task-set Γ = {T̂1, . . . T̂n}
number of tasks n ε N

job index i, j ε N
task worst-case execution time with no interference Ci ε R

task period hi ε R
task relative deadline Di ε R

task absolute deadline di ε R
task release time ri ε R

task finish time fi ε R
task worst-case response time Rw

i ε R
task best-case response time Rb

i ε R
task processor demand PDi ε R

task busy-period L ε R
input jitter also known as sampling jitter Jh ε R

output jitter also known as response-time jitter Jτ ε R
input-to-output delay also known as StA latency τ ε R

k-th sensing time instance ts
k ε R

k-th actuation time instance ta
k ε R

nominal input-output delay L ε R

Each controller task Ti is represented by a tuple Ti : (Oi, Ci, hi, Di), where Oi is the task’s release131

offset, Ci the Worst-Case Execution Time (WCET), hi the task’s period and Di the deadline. Rw
i and Rb

i132

are the worst and best-case response times. The task instances, also referred to as jobs, are scheduled133

non preemptively in order of their arrival. Each controller task is assumed to have three activities in134

the order sensing, computation and actuation. Sensing is the first activity which reads the data from a135

sensor. The computation also known as control law execution is the second activity. The actuation is the136

last activity which writes the data to physical devices.137

The variability in the times at which the control software reads and writes the input and output
data is called jitter. Jitters have a major impact on the performance of some control systems. To formally
define the jitters that must be respected by an execution platform, the authors in [7] introduce four
timing contracts namely Zero Execution Time (ZET), Bounded Execution Time (BET), Logical Execution
Time (LET) and Timing Tolerance (TOL) contract. In this work, we consider the latter contract which is
more general than ZET and BET, and does not imply strong implementation constraints like LET [9]. A
Timing Tolerance TOL contract implies that the following conditions hold:

ts
k ε [k.h, k.h + Jh],

ta
k ε [ts

k + τ − Jτ , ts
k + τ + Jτ],

(2)

where Jh is the tolerable input jitter. τ is the tolerable input-to-output delay also known as tolerable138

Sensing-to-Actuation delay (StA delay). The nominal input-to-output delay L is a minimum delay139

Version February 8, 2018 submitted to Sensors 5 of 26

experienced between input to output. Jτ is the tolerable output jitter. The tolerances Jh and Jτ are also140

referred to as margins, namely input jitter margin and output jitter margin.141

2.2. Framework Steps142

To bridge the control-computing gap, we propose a framework that fuses the control and143

scheduling viewpoints in the context of model-based system design. Figure 1 shows the overall144

step-by-step flow of the framework.145

Step 1 : Controller Design146

Based on the functional and non-functional requirements, the first stage of the framework is the147

control study, that determines the control equations that will potentially allow the system to achieve148

the required control performances. This control study relies on the designer’s expertise with the help149

of control-system simulators like MATLAB/Simulink, which include the plant model. We note that150

at this stage the timing issues are not considered, and in particular the implementation delays are151

ignored, which may require to revisit the choice of the control law later in the design flow.152

The next stage is to model the control law in CPAL, which provides native support for Finite153

State Machines (FSMs) to describe the logic of the algorithm, in a similar way as StateFlow. The CPAL154

model controls the plant model designed in the Simulink environment. At this stage, timing delays are155

introduced : the controller tasks are activated with input-to-output delays using timing annotations in156

the CPAL model (input and execution time jitter). The timing annotations are also useful for defining157

tasks’ periods, deadlines, priorities of execution, and the scheduling policy. The CPAL interpreter,158

which can be seen as an execution engine, runs the controller model within the Simulink environment159

that hosts the CPAL/Simulink co-simulation. The simulation results such as control performance, task160

activation diagram and values of the outputs are all available within Simulink.161

As discussed in [10], the controller design can be done using two analytical methods: expected162

control performance and worst-case control performance. The Jitterbug toolbox [11] is used to calculate163

the expected value of quadratic control costs. The Jitter margin toolbox is used to calculate the164

worst-case control cost, as explained in details in Section 5.2.1. For a given control performance, this165

tool determines the tolerable jitter margins. In turn, these jitter margins provide admissible deadlines166

for the controller tasks. Using the proposed co-simulation, we verify the tolerable input jitter margin167

Jh and tolerable input-to-output delay (StA delay) under which the system maintains an acceptable168

stability performance. We also fine-tune the obtained deadline for step response expectations when169

required. Further, using simulations, we study the effect of these tolerable jitter margins on control170

performance.171

Step 2 : Software Design172

At the end of step 1, each controller model consists of a single task performing sensing,173

computation and actuation. Note that this task can be integrated with other existing tasks ("Software174

components" block in 1). At step 2, a suitable scheduling solution, i.e., a scheduling policy and the175

associated parameters should be selected so as to meet the real-time constraints expressed as deadlines176

derived at the first step. This can be achieved, for instance, using the optimization framework in [12],177

a form of scheduler synthesis. Schedulability analysis has to be performed under some Worst-Case178

Execution Time (WCET) assumptions for all tasks. These values can be obtained by analysis or, as in179

our approach, approximated with on-target measurements. If this scheduling configuration meets the180

timing performance needed to provide the necessary control performance to the controller task then181

the design flow moves on to step 3. Otherwise, we return to step 1 and redesign the control law.182

Version February 8, 2018 submitted to Sensors 6 of 26

M
o

d
el

 o
n

 T
ar

ge
t

(S
te

p
 3

)
C

o
n

tr
o

lle
r

d
es

ig
n

 (
St

e
p

 1
)

So
ft

w
ar

e
d

es
ig

n
 (

St
e

p
 2

)
M

o
d

el
 in

tr
o

sp
e

ct
io

n
 (

St
e

p
 3

)
C

o
n

tr
o

lle
r

d
es

ig
n

 (
St

e
p

 1
)

So
ft

w
ar

e
d

es
ig

n
 (

St
e

p
 2

)

 Calculate Jh and Jτ

Jitter margin tools

Check period, WCET,
jitters at run-time

Functional and non
functional

requirements

Modeling CPAL
controller

No

 Measuring WCET
CPAL code on target

WCET

Yes

Functional controller
with feasible

scheduling parameters

Model on Target that
guarantee stability and

schedulability

Performance
assumption met?

No

Yes

Synthesize
scheduler

Is schedulable?
schedulability analysis

Co-simulation CPAL
in Simulink

Check period, WCET,
jitters at run-time

Functional and non
functional

requirements

Control study

admissible
deadline

 Measuring WCET
CPAL code on target

WCET

Functional controller
with feasible

scheduling parameters

No

Model on Target that
guarantee stability and

schedulability

Performance
assumption met ?

No

Yes

Synthesize
scheduler

Is schedulability
analysis passed ?

Yes

Optimizing the
CPAL code

123

R
e

-d
e

si
gn

 c
o

n
tr

o
lle

r

M
o

d
if

y
ji

tt
e

r
m

a
rg

in
s

Analytical methodsTiming accurate simulation

Software
components

T
im

in
g

to
le

ra
n

ce
 a

ss
u

m
p

ti
o

n
s

ve
ri

fi
ca

ti
o

n
T

ar
ge

t
ru

n
-t

im
e

 v
er

if
ic

a
ti

o
n

St

a
b

il
it

y
g

u
a

ra
n

te
e

d
 c

o
n

tr
o

lle
r

Figure 1. Illustration of framework flow for fusing control and scheduling viewpoints. The dashed
part in the software design step is out-of-scope of this paper.

Version February 8, 2018 submitted to Sensors 7 of 26

The same CPAL model executed in the simulation environment (in the previous step) is now183

interpreted directly on the target to measure the execution time of the task. Schedulability analysis184

can then be performed, and we propose a novel schedulability analysis for FIFO policy with offsets in185

Section 4. Although FIFO is outperformed by most policies in terms of meeting deadlines [13], it has186

the advantage that the scheduling order does not depend on the execution times, irrespective of the187

platform. The schedulability analysis checks whether the controller task we integrate with the existing188

software components remains schedulable or not.189

This stage, if successful, ensures that the timing constraints coming from the control laws are met190

by the software and execution platform. If unsuccessful, we can first try to optimize the CPAL code.191

This may include breaking down the controller task into sub-tasks, for instance one for sensing, one192

for computation and one for actuation, which is a classical strategy to increase the schedulability of193

control systems [14], but in some cases the suitable strategy has to be specific to the application. If still194

unsuccessful, the process returns to step 1 for a redesign or fine-tuning of the controller. In any cases,195

the model used at step 1 for functional simulation will be the one used for execution on the target196

hardware.197

Step 3 : Model Introspection198

From step 2, we obtain a functional CPAL controller along with the scheduling parameters to be199

configured for on-target execution. These parameters have been derived from the models. To make200

sure that there is no distortion between the model’s assumptions and the execution, task characteristics201

such as period, offset, jitter, priority, deadline as well as the activation time of the current and previous202

instances are monitored during execution using the CPAL introspection features. In Section 5, we203

discuss the monitoring of CPAL model execution at run-time, especially the monitoring of timing204

tolerance specifications such as input jitters, output jitters and the input-to-output delays.205

3. Analysis and Co-simulation of Controller Design206

This section explains the controller design using analytical methods and co-simulation. The result207

of this stage is a controller whose stability and more generally performance are guaranteed under208

certain assumptions on the worst-case timing behavior of the software implementation.209

3.1. Jitter Analysis210

Jitter analysis is performed using two evaluations, namely the evaluation of the expected control211

performance, and of the worst-case control performance. For instance, the Jitterbug toolbox [11] can be212

used to calculate the expected value of quadratic control costs. This measure in the general case is not213

sufficient to guarantee the stability of the plant [10], but stability can be verified through worst-case214

control performance analysis. In our framework, the technique presented in [15] and implemented in215

the jitter margin toolbox is used for the derivation of the jitter margins, both input and input-to-output216

delays, ensuring stability under the worst-case control performance. The calculated jitter margins217

imply the maximum deadline for a controller task. This theoretical bound on the deadline derived by218

analysis may be further fine-tuned by simulation as explained in the next subsections.219

3.2. Controller Modeling in CPAL220

CPAL, short for Cyber-Physical Action Language, is a modeling and discrete-event simulation221

language for cyber-physical systems [16]. CPAL serves as a design-exploration platform with graphical222

representation. The models can be executed both in simulation mode as well as in real-time mode on an223

embedded target. CPAL is a lightweight execution engine (around 10000 lines of C code) designed for224

timing predictability that can run on top of an OS or without any OS, and thus without the interferences225

the OS would create.226

In case of simulation, execution is as fast as possible according to a logical clock and not the227

physical time (see [17]). Typically, executing in simulation mode is several orders of magnitude faster228

Version February 8, 2018 submitted to Sensors 8 of 26

than in real-time mode. The controller code executes in zero-time during simulation, except if it uses229

predefined CPAL timing annotations. The simulation mode CPAL interpreter is an execution engine230

hosted by an operating system. The simulation execution can be carried out in a stand-alone built-in231

simulation environment [18] or it can be used in co-simulation environments, for instance as in this232

work integrated in MATLAB/Simulink as an S-function. CPAL aims to achieve the same temporal233

behavior in simulation mode and real-time mode on the target. This property is referred to as timing234

equivalence. It can be achieved through timing annotations to inject delays in the simulation model.235

Figure 2 illustrates the CPAL timing annotations to inject input and output jitters in a control model.236

Figure 2. Simulating random input and output jitters affecting a CPAL controller model using timing
annotations. Level 1 means that the controller is being executed.

Like other modeling environments for control programs such as StateFlow, CPAL provides237

support for Finite State Machines (FSMs) with conditional and timed transitions. As can be seen238

in Figure 3, transitions can happen either when a boolean condition is true, after a certain time239

duration is spent in the active state, or the conjunction of both. A distinctive feature of CPAL is that240

it relies on model interpretation: a CPAL model verified by simulation can be executed directly on241

an embedded target such as ARM Cortex - M4 (FRDM K64F) and ARM Cortex - A7 (Raspberry242

Pi). Model-interpretation is well suited for rapid-prototyping [19] and prevents any distortion243

between models and code that could be introduced during code generation. A disadvantage of244

model interpretation is that it is slower than compiled code. For that reason, it is not always a practical245

solution for on-target execution. For the purpose of simulation on desktop machines, the execution246

time of the control part is however not an issue, especially in a co-simulation environment where247

simulating the plant is by far the most time-consuming task.248

The CPAL documentation, a graphical editor and the execution engine for various desktop and249

embedded platforms are freely available at http://www.designcps.com. The CPAL control library250

as in Figure 4 needed to execute in MLSL controller models written in CPAL, and the models to251

reproduce the experiments of this paper are freely available at https://www.designcps.com/wp-252

content/uploads/cpal_codesign_framework.zip.253

3.3. Co-simulation in MATLAB/Simulink254

In our proposed co-simulation approach, a controller model is designed in CPAL, and the plant255

model in Simulink. Controllers can easily be designed in Simulink too. But Simulink out-of-the-box256

is not offering possibilities to study the performance of control loops subject to scheduling and257

networking delays. Indeed, varying execution times, preemption delays, blocking delays, kernel258

overheads cannot be captured in the standard Simulink environment. This can be done only with259

TrueTime [2], which, to the best of our knowledge, is the most widely used tool in the real-time and260

control communities to study control performance subject to timing irregularities. One should also cite261

T-Res [4], a more recent and modular version of TrueTime.262

http://www.designcps.com
https://www.designcps.com/wp-content/uploads/cpal_codesign_framework.zip
https://www.designcps.com/wp-content/uploads/cpal_codesign_framework.zip
https://www.designcps.com/wp-content/uploads/cpal_codesign_framework.zip

Version February 8, 2018 submitted to Sensors 9 of 26

Figure 3. CPAL program illustrating the native support for FSM, conditional and timed state transitions.
The top-left graphic is the representation of the FSM embedded in a process, while the bottom-left
graphic is the functional architecture with the flows of data, as both seen in the CPAL-editor.

 Pendulum Angle
 Force

 Cart Position

Simscape

 Scope20

1

100

 0
reference

100

Force
Impulse

kp_in

ki_in
p_out kd_in

 controller.ast
filterGain_in

angle_in

reference_in

force_out

i_out

d_out

CPAL CONTROLLER

Add4

Controller model in CPAL Plant model in Simulink

Figure 4. Controller model for an inverted pendulum integrated within the Simulink environment.
Input data of the controller are visible in the design window and can be changed without the need to
access the CPAL model. The output data are updated by the CPAL controler. The controller model is
written in CPAL and executed by an interpreter embedded in the controller block. The ast file format is
the more-compact binary equivalent form of the source-code controller model.

In [5], we have discussed how to integrate the timing behaviour of the controller into Simulink263

models. In this work, we have studied how CPAL timing-accurate interpretation in Simulink compares264

against TrueTime and T-Res. The important difference, and also the advantage of our co-modelling265

approach is that the same model used during simulation can be used on target, whereas TrueTime266

and T-Res are simulation environments. Also, like Simulink, CPAL is a high-level embedded systems267

specific language which favors productivity and correctness by providing domain-specific constructs268

and abstractions [20]. In the case of the co-simulation of CPAL within MLSL, Simulink acts as the269

primary simulator while CPAL executes the controller model as an S-function, and is being called270

by the Simulink engine. The S-functions (system-functions) are high-level programming language271

description of a Simulink block written in C, C++ etc. The CPAL control library is implemented as a272

mex (Matlab Executable) file, which executes the CPAL controller model. This CPAL controller is a273

generic execution engine that can run any CPAL model. Before execution, the CPAL source model274

is converted into a binary-equivalent representation (an Abstract Syntax Tree, shortly ast file format)275

Version February 8, 2018 submitted to Sensors 10 of 26

using the CPAL parser. The Simulink engine interacts with the CPAL model through data flows and276

control flows. Data flow, for instance force_ out in Figure 4, are used for the exchange of information277

between the Simulink engine and the CPAL controller, while the control flows define when Simulink278

invokes the CPAL S-function.279

Figure 5. Snippet of CPAL code instantiating a controller of period 10 ms and offset 2 ms and specifying
the variation of the input jitter Jh and the input-to-output delay τ during a simulation run. This is
achieved through a timing annotation executed in simulation, but ignored once on target.

The implementation is discrete-event based simulation using Simulink built-in zero-crossing280

detection. The concept of tasks and real-time schedulers are available natively in CPAL. The default281

CPAL scheduling policy is FIFO, but CPAL also supports Non-Preemptive Earliest Deadline First282

(NP-EDF) and Fixed Priority Non-Preemptive (FPNP). In Figure 5, we show the instantiation of a283

controller task and the task parameters with the delays and jitters. A timing annotation can also specify284

the scheduling policy if the controller consists of several tasks. Simulation of the plant dynamics285

is carried-out by computing model states at successive time steps over a specified duration. This286

computation is done by a solver provided in Simulink. Since our overall model is discrete, a variable287

step size solver is used in our co-simulation approach. The rationale behind this choice is that for the288

timing analysis of real-time control systems, it is necessary to reduce the step size (when needed) to289

increase the accuracy when model states are changing rapidly during zero crossing events. Section 5.1290

presents an example co-simulation of a simplified cruise control system.291

4. Timing Verification Using Schedulability Analysis292

The next step in the framework is the timing verification of the controller model designed in the293

previous step. From the jitter margins, we derive the deadlines of the controller task(s). Typically it294

will be a single task, but the controller can also be implemented as several tasks such as an input task,295

a computation task and an output task. The deadlines will be used for the scheduler synthesis and296

schedulability analysis. To obtain realistic Worst-Case Execution Times (WCET) for the schedulability297

analysis, we use a measurement-based technique in which the controller model is executed on the298

target hardware.299

4.1. Worst-Case Execution Time (WCET) Measurement300

The CPAL controller model which we executed earlier in the co-simulation environment301

is now uploaded to the target platform to estimate the WCET by measurements. The CPAL302

model-interpretation engine is specific to a target platform, it can be executed on top of an Operating303

System (OS) or without an OS, the latter being called Bare-Metal Model Interpretation (BMMI). There304

are two ways to estimate the WCETs: using a logic analyzer or taking advantage of CPAL in-built305

execution-time measurement feature. The latter possibility is only available when CPAL is hosted by an306

OS, as freeRTOS, embedded Linux or Raspbian. It does not require connecting the target to an external307

measurement device and instrumenting the code, and thus provides a quick method to estimate the308

WCET. It is however less accurate than measurements using logic analyzer, since it involves additional309

run-time overhead in the interpretation engine.310

Version February 8, 2018 submitted to Sensors 11 of 26

For the discrete-time PID controller used in Section 5, the measured WCET of the CPAL controller311

task using logic analyzer is 34.4 µs on a Raspberry Pi2 model B. This can also be obtained using the312

in-built feature of CPAL �-stats, a command-line option to be used when we execute the model on313

target. When we remove the code of the actual control algorithm, leaving just the skeleton of the314

tasks, we can observe the scheduler overhead, which amounts to 155 µs. When we execute the model315

as it is, we observe the scheduler overhead plus the execution time of the task to be 189 µs. The316

difference between these two values would then provide the execution time of the task, 34 µs, which is317

indeed observed also on the logic analyzer. With an ARM Cortex-A7 core at 900 MHz, Raspberry Pi318

is a cost-effective development platform to experiment with CPAL but it is not suited for executing319

real-time applications due to large timing variabilities (e.g., jitters in task release times). The best320

supported platform with respect to timing predictability is the NXP FRDM-K64F, a SOC on which the321

CPAL execution engine runs on the bare hardware, thus without any interference and latency from an322

OS. As provided in the supplementary files (both WCET measurement and jitter measurements), we323

experiment the same controller model on FRDM-K64F target too, which is a BMMI target. Despite324

BMMI, due to inferior hardware configuration, we observe that the same task takes 340 µs to execute325

on the FRDM-K64F, about 10 times more than on the Raspberry Pi. We present the model on target326

experiments of Section 5 with Raspberry Pi because we could output the jitter measurements on the327

console at run-time through process introspection features. CPAL on FRDM-K64F does not have a328

facility to provide console outputs. In this case, a logic analyzer helps us to monitor the model executed329

on the target.330

Deriving safe and precise WCET bounds is a difficult issue in itself (see [21] for a survey), and331

determining WCET estimates using state-of-the-art techniques and tools is outside of the scope of332

this work. Although it is a practical approach widely employed in the industry, using measurements333

as done in this work carries the risk of being unreliable because the worst-case situation might334

not have been observed. This becomes especially true for complex systems, with many tasks and335

architectures including multiple cores and multiple levels of caches. In such settings, more advanced336

WCET estimation techniques must be employed. Our framework would however work with any337

other WCET estimation techniques such as static deterministic analysis or probabilistic analysis. For338

instance, it is possible on the basis of the measurements to provision for a safety margin, typically339

using probabilistic arguments [22]. This margin can for instance account for cache latencies which340

have not been considered here. Another option is to employ an analytic WCET analysis, generally341

considered safer than measurement-based techniques, although much more conservative.342

4.2. FIFO Scheduling to Simplify Design and Verification343

We are interested in devising an environment that eases the design and verification of embedded344

real-time systems. A main goal is to provide an environment where also the inexperienced designers345

are able to quickly model and deploy trustworthy embedded systems without for instance having to346

master real-time scheduling theory and resource-sharing protocols. Especially corner case faults due347

to different timing behaviors or race conditions can be a nightmare to debug. We acknowledge that348

techniques to avoid these problems exist, but they require experience and make both the design and349

the code more complex and error-prone. When processing power is sufficient other concerns than350

performance, such as simplicity and predictability, can be considered. In our context, as shown in [13],351

FIFO exhibits two properties which greatly eases the verification:352

• Deterministic execution order: the execution order of FIFO scheduling with offset and strictly353

periodic task activation is uniquely and statically determined. This means that whatever the354

execution platform and the task execution times, be it in simulation mode in a design environment355

or at run-time on the actual target, the task execution order will remain identical. Beyond the task356

execution order, the reading and writing events that can be observed outside the tasks occur in357

the same order. This property, leveraged by the CPAL design flow [16], provides a form of timing358

Version February 8, 2018 submitted to Sensors 12 of 26

equivalent behavior between development and run-time phases which eases the implementation359

of the application and the verification of its timing correctness.360

• Execution time sustainability: FIFO scheduling is sustainable in the tasks’ execution times,361

meaning that if a task set is deemed schedulable and the execution times of the tasks are reduced,362

the task set remains schedulable.363

The latter property allows simulation as a valid technique for schedulability verification. In364

practice, however, the simulation time required can be unpractical if the least-common multiple of the365

task periods is too large. A schedulability analysis does not suffer from this limitation. In this context,366

we derive a schedulability analysis for FIFO scheduling on uniprocessor systems with strictly periodic367

task activation and tasks having release offsets. It should be noted that the use of offsets is a technique368

which increases the ability of FIFO to meet deadlines, no matter if the offset of a task is unique as in369

this work (see the experiments in [13]) or may vary, as in [23]. With offsets, FIFO becomes a candidate370

scheduling policy for low-memory embedded hardware with constrained run-time overheads.371

We proposed in [12] a scheduling synthesis approach, where performance, hardware and372

functional constraints only need to be specified to derive a feasible low-level scheduling configuration.373

The framework proposed in this paper is compatible with any scheduling policy that guarantees that374

the deadlines will be met, although in the remainder of this paper, we will rely on FIFO which, as375

explained, facilitates the system design.376

4.3. FIFO Schedulability Analysis377

Here we present an analysis to check that the tasks will always terminate before their deadline. In
the case of strictly periodic release, the release time rj

i of job T j
i is given by

rj
i = Oi + jhi (3)

and its absolute deadline dj
i by

dj
i = Oi + jhi + Di. (4)

Di is the relative deadline, hi is the task’s period and Oi is the task’s offset. Even though we are not378

aware of any prior work on FIFO scheduling with offsets, we were able to construct a schedulability379

analysis for this policy using already established schedulability results, in particular, the schedulability380

test for EDF with offsets presented by Pellizzoni and Lipari [24].381

We note that FIFO is work-conserving in the sense that it does not introduce any idle times when382

work is pending. This means that prior to any deadline miss, there must be a busy period in which383

the processor is not idling. As we assume arbitrary offsets and strictly periodic releases, we do not384

know when a deadline-miss happens and so, would need to validate all busy periods within twice the385

hyperperiod. To avoid this prohibitively long search, we construct for each task, a hypothetical critical386

instant leading to a task’s first deadline miss. Let τi be the task to miss its deadline, and τ
j
i released387

at rj
i the corresponding job. The critical instant happens when all tasks other than τi release a job as388

close to rj
i as possible. If we can prove that despite this pessimistic assumption, job τ

j
i will finish before389

its deadline dj
i , we can conclude that no job of task τi will ever miss its deadline. If we can repeat the390

same argumentation for each task in Γ, we can conclude that the complete task set is schedulable.391

Formally, we define for each task Ti a pseudo task-set Γ̂ that represents the critical instant for392

task Ti. The two task sets Γ and Γ̂ only differ in the task offsets, the rest of the parameters remaining393

identical. Let T̂ j
i be a job that misses its deadline. As we know that in a work-conserving scheduling394

algorithm, a deadline miss must be within a busy-period L, we set the release time as follows r̂j
i = L395

and its deadline to d̂j
i = L + Di.396

Version February 8, 2018 submitted to Sensors 13 of 26

George et al. [25] presented a bound based on the task deadline and the utilization of the task set:

LU := max
i

{
D1, D2, . . . , Dn,

∑n
i=1(hi − Di)UΓ

1−UΓ

}
(5)

Ripoll et al. [26] presented a bound based on the following recursive equation:

La+1
R :=

n

∑
i=1

La
R

hi
Ci (6)

Since both bounds LR and LU are independent, we can take the minimum of both as the task set’s busy
period L:

L := min{LR, LU} (7)

Naturally, the busy period is only bounded if the task set utilization UΓ is less than or equal to one.397

We now select the task parameter of each task T̂l with l 6= i to maximize the likelihood of a398

deadline miss of job T̂ j
i . To this end, we postpone the job release of the last job of task T̂l executed399

before the deadline miss as much as possible. An earlier job release will only increase the slack time400

and so, reduce the pressure on the finishing time of job T j
i .401

In case of a higher priority task, i.e., T̂l with l < i, the job must be released just before or402

synchronously with T̂ j
i , whereas tasks with lower priority must be released strictly before T̂ j

i . Since403

we use task priorities as a tie breaker, a lower priority task released synchronously with T̂i would be404

executed after, and not before task T̂i. Pellizzoni and Lipari presented a computation of the minimum405

distance between any two release times of two different tasks Ti and Tl . In contrast to their work, we406

are not only interested in the minimal distance, but also in the minimal distance larger than zero. We407

therefore repeat the computation of the minimal distance.408

Let δ be distance between jth job of task Ti and the k job of task Tl :

δi,l = j · hi + Oi − k · hl + Ol (8)

By replacing hi with xi · gcd(hi, hl) and hl with xl · gcd(hi, hl), we get

δi,l =j · hi + Oi − k · hl + Ol

j · xi · gcd(hi, hl) + Oi − k · xl · gcd(hi, hl) + Ol

(j · xi − k · xl) gcd(hi, hl) + Oi −Ol

Since j · xi − k · xl can take any arbitrary value, we replace it by x and get

δi,l = x · gcd(hi, hl) + Oi −Ol (9)

Now, we just need to find the smallest δi,l ≥ 0 and the smallest δi,l ≥ 1, which are given by

x =
Ol −Oi

gcd(hi, hl)

and
x′ =

Ol −Oi + 1
gcd(hi, hl)

Applying these values to Equation (9), we get

∆i,l = Oi −Ol +

⌈
Ol −Oi

gcd(hi, hl)

⌉
gcd(hi, hl). (10)

Version February 8, 2018 submitted to Sensors 14 of 26

and

∆′i,l = Oi −Ol +

⌈
Ol −Oi + 1
gcd(hi, hl)

⌉
gcd(hi, hl). (11)

Finally, we can set the release time of the last job T̂k
l of task T̂l executed before T̂ j

i as follows:

r̂k
l =

{
r̂j

i − ∆i,l if l ≤ i

r̂j
i − ∆′i,l if l > i.

(12)

The offset of task τi is given by
Ôi = r̂j

i mod hi, (13)

and for all other tasks l 6= i by
Ôl = r̂k

l mod hl . (14)

The remaining task set parameters, i.e., the relative deadline, period and execution time remain409

unchanged.410

It is sufficient to validate the schedulability of Γ̂: if T̂i in Γ̂ is schedulable with FIFO, so is Ti in Γ.411

Furthermore, since we know which job of task T̂i will miss its deadline in case of a deadline miss, it is412

sufficient to concentrate on the jth job T̂ j
i , which allows us to reduce the analysis time. If we are able to413

prove or disprove a deadline miss of job T̂ j
i , we can immediately abort the schedulability analysis of414

task Ti. Consequently, we concentrate only on job T̂ j
i and ignore all others. First, we define the number415

of job releases that may postpone the completion of task i within a given time interval.416

The function ηinc
l (t1, t2) denotes the number of job releases of task τl within the time interval

[t1 : t2], i.e., including t2 and is given as follows:

ηinc
l (t1, t2) =

⌊
t2 − Ôl

hl

⌋
+ 1−

⌈
t1 − Ôl

hl

⌉
(15)

The function ηexc
l (t1, t2) denotes the number of job arrivals of task τj within the time interval

[t1 : t2), i.e., excluding t2 and is given as follows:

ηexc
l (t1, t2) =

⌈
t2 − Ôl

hl

⌉
−
⌈

t1 − Ôl
hl

⌉
(16)

Using these two functions, we define the processor demand PD within time interval [t1 : t2] that
can delay the completion of a job of task T̂i released at t2:

PD(t1, t2, i) = ∑
l≤i

ηinc
l (t1, t2) · Cl + ∑

l>i
ηexc

l (t1, t2) · Cl (17)

Again, we distinguish between tasks with higher priorities and tasks with lower priorities to correctly417

account for the tie-breaking policy in case of synchronous job arrivals.418

We can test for a deadline miss of job T̂ j
i as follows:

∀t ∈ [0 : r̂j
i , i] : PD(t, r̂j

i , i) ≤ d̂j
i − t⇒ f̂ j

i ≤ d̂j
i (18)

To reduce the number of test, we observe that PD(t1, t2, i) only changes at the time of a job release,
which means that we only need to validate the schedulability at these points:

Q = {t|∃l, k : t = k · hl + Ôl ∧ t ≤ L− Di} (19)

Version February 8, 2018 submitted to Sensors 15 of 26

Hence, we can validate the schedulability of task Ti as follows:

∀t ∈ Q : PD(t, r̂j
i , i) ≤ d̂j

i − t⇒ f̂ j
i ≤ d̂j

i (20)

We note that the schedulability test is sufficient but not necessary, and does not provide an419

equivalence between the schedulability of Γ and Γ̂. The schedulability analysis can falsely deem a420

schedulable task set unschedulable, but not the inverse.421

From Equation (20), we find the worst-case finishing time of the task Ti422

f̂i = max
∀t∈Q
{PD(t, r̂j

i , new) + t} (21)

Then the worst-case response time of a task Ti is Rw
i423

Rw
i = f̂i − r̂i (22)

Algorithm 1 Worst-Case Response time Rw
i

1: i = 1
2: isSchedulable = true
3: L = computeBusyPeriod
4: while i ≤ n ∧ isSchedulable do
5: r̂j

i = L
6: Ôi = rj

i mod hi
7: for all l do
8: ˆdisti,l = computeMinDistance(i, l)
9: Ôl = rj

i − ˆdisti,l mod hi
10: end for
11: Q = {t|∃l, k : t = k · hl + Ôl ∧ t ≤ L}
12: for all t ∈ Q do
13: if PD(t, r̂j

i , i)− t > d̂j
i then isSchedulable = false

14: end if
15: if ¬isSchedulable then break
16: end if
17: f̂ j

i = {PD(t, r̂j
i , i) + t}

18: end for
19: f̂i = max{ f̂ j

i }
20: Rw

i = f̂i − r̂i
21: i = i + 1
22: end while
23: return isSchedulable
24: return Rw

i

Algorithm 1 consolidates the analysis presented so far. Using this algorithm, we can derive the424

worst-case response times of all task. To check schedulability, we verify that these response times are425

less than or equal to the fine-tuned deadlines, which we have obtained from the previous step. To426

achieve transparency and to ease the reproduction of the results, the source code of the programs used427

in our experiments, including the schedulability test, is available online1. The source code enables the428

reproduction of the experiments presented in this paper, as well as evaluation for different parameters429

settings. The tool cpal2x (see [17] for usage), which is available in the CPAL distribution, extracts the430

timing information (timing and scheduling annotations) from the controller function designed at step 1.431

This constitutes the system task model which is then inputted to the presented schedulability analysis.432

1 https://www.designcps.com/wp-content/uploads/cpal_codesign_framework.zip

https://www.designcps.com/wp-content/uploads/cpal_codesign_framework.zip

Version February 8, 2018 submitted to Sensors 16 of 26

5. Evaluation and Results433

We now evaluate the framework with the help of an automotive control system. Before presenting434

the evaluation, we describe the system model. As depicted in the framework of Section 2, the evaluation435

consists of three steps. Firstly, we calculate the tolerable jitter margin values under which the system436

remains stable using jitter margin analysis. The calculated output jitter margin provides the maximum437

deadline for the controller task. This deadline is further fine-tuned using co-simulation that provides438

additional and more fine-grained information about the control performance. Secondly, we evaluate439

the schedulability of the controller task when executed with other tasks in the system. Finally, in440

the third step, we use CPAL introspection to check that the run-time behavior of the controller task441

complies with the design assumptions.442

5.1. Motivating Example : Cruise Control ECU443

A Cruise Control system maintains the speed of a car at a desired level. For that, the system444

uses a servo mechanism that takes over the throttle of the car to maintain a steady speed as set by the445

driver. The system model used is taken from the Simulink reference examples [27], but the controller446

model is replaced by a CPAL implementation. Without injecting run-time delays, both the CPAL447

implemented version of the controller and the Simulink version provide the same outputs. This448

comparison is available in the supplementary files provided. Figure 6 shows the architecture of the449

co-simulation model. The proposed co-simulation environment provides the control performance450

with the run-time delays due to execution times and interferences from higher priority tasks, and451

facilities the visualization of the task scheduling. In addition, the same controller model developed for452

simulation can be executed on the target by the CPAL execution engine.453

Figure 6. Illustration of a CPAL controller in Simulink. Here, the CPAL model controls the servo which
in turn actuates the engine throttle. The controller task is executed with simulated input-to-output
delays.

In our implementation, different tasks and variables are defined within the controller model. We454

consider tasks, namely set point manager, cruise control manager and sensors manager. The label T_out in455

Version February 8, 2018 submitted to Sensors 17 of 26

Figure 6 is the controller tasks’ output which actuates the DC servo mechanism controlling the throttle456

valve. We model the DC servo with the transfer function P(s) = 500
(s2+s) . The controller developed relies457

on a PID control algorithm with proportional gain Kp = 0.96, derivative gain Kd = 0.049, integral gain458

Ki = 0.12 and filter divisor N = 5.0.459

5.2. Controller Design460

The evaluation of the controller designed consists of two steps, namely the analytical jitter margin461

method and the co-simulation technique.462

5.2.1. Step 1. a) Stability Verification using Jitter Margin Concept463

For a given controller and a nominal input-to-output delay L, the Jitter margin toolbox [15]464

computes the tolerable level of jitter for which stability is guaranteed (like phase margin and gain465

margin computations of control systems). This toolbox provides the stability curve that determines the466

maximum tolerable output jitter Jτ and maximum tolerable input jitter Jh, based on the nominal467

input-output delay L. Figure 7 shows the worst case control cost which is a H∞ (H-infinity)468

performance metric calculated for different input and output jitters. For example, for the PID controller469

of the previous sub-section with a sampling period of 12 ms, the nominal (minimum) input-to-output470

delay L is equal to 5.6 ms, the input jitter margin Jh is 3.64 ms, the output jitter margin Jτ is 5.45 ms,471

while the control cost H∞ is 72.13 ms. The input-to-output delay, which is the sum of encountered472

jitters during the execution of the controller task is then 9.09 ms. The control cost we use is H∞, a gain473

parameter calculated when we apply a disturbance input to the plant and the corresponding output474

amplifies.475

Figure 7. The worst-case control cost calculation during various input and output jitter occurrences.
The control cost mentioned here is H∞, a gain parameter. Finite control costs indicate that the system is
stable while an infinite value ′ In f ′ indicates that the system tends to be unstable. At zero input and
zero output jitter, the highest performance is achieved. The control cost increases when jitters increase.

When we get a finite value for the gain parameter H∞, it indicates that the system remains stable.476

Beyond the jitter margin, we observe that the gain becomes infinite, which means that the system tends477

to be unstable. During the ideal situation where the controller task executes with zero input jitter and478

zero output jitter, we obtain the highest possible control performance with control costs H∞ equal to479

2.14. If we want to guarantee a certain control performance, expressed in terms of H∞, we have to480

design the system such that the experienced jitters are within the jitter margins leading to H∞ being no481

Version February 8, 2018 submitted to Sensors 18 of 26

greater than the target. For instance in Figure 7, the jitters must remain in the shaded region to ensure482

that H∞ remains equal to 72.13. This allows to deduce that the controller task deadline must be less483

than 9.09 ms. Now, to fine-tune the deadline and also to study the effect of scheduling choices on the484

control performance, the co-simulation approach is used. In the implementation of the cruise-control485

system, the controller task, denoted Task 1, is activated every 12 ms. Task 2 is another task with the486

same period, always activated before Task 1. In case both are released at the same time, the execution487

time generates an input jitter for Task 1. This latency, plus the varying execution time of Task 1 itself,488

induce the output jitter.489

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0

0.5

1

0

0.5

1

CPAL controller task #2

CPAL controller task #1

Offset=0

5.45 ms3.64 ms

Figure 8. Successive activations of two tasks under FIFO. Task 1 is the controller we design with a
period of 12 ms. Task 2 is the cruise control manager also with a 12 ms period. As Task 2 is of higher
priority, it is activated first when both tasks are released simultaneously. Using varying execution time
annotations for Task 1 and Task 2, we enforce an input-to-output delay of at most 9.09 ms for Task 1,
which is the bound obtained from jitter margin analysis.

Figure 8 illustrates the execution of the tasks under First-In First-Out (FIFO) policy. As we can490

see from Figure 8, Task 1, the controller under design, experiences an input jitter of 3.64 ms. This is491

realized by means of an execution time annotation (see Section 3.3) of an interfering task activated492

immediately before. By setting the execution time of Task 1 to 5.45 ms, combined with the input jitter,493

we enforce an input-to-output delay of 9.09 ms. This is the tolerance level beyond which the system494

performance degrades significantly, as shown in Figure 9.495

5.2.2. Step 1. b) Co-simulation CPAL/Simulink496

The co-simulation of CPAL in the Simulink environment serves two purposes: fine-tuning of the497

deadline and selection of the scheduling policy. Although the jitter bound derived by jitter margin498

analysis helps to assign the deadline, in practice a system designer may want to evaluate the control499

performance with the response to an input elementary signal such as impulse or a step signal. For500

this purpose, we feed an unit step signal in the co-simulation model to study the step response of the501

system. Based on the step response characteristics such as rise time, settling time and overshoot, we502

can decide whether a fine tuning of the deadline is necessary. For instance, if the control requirement503

is to achieve a desired settling time, defined as the time taken to settle within 2% of the steady state504

value, equal to 0.3 s, then the deadline should be no greater than 8.2 ms (versus 0.44 s with a deadline505

of 9.09 ms). In our previous work [5], we have exemplified the co-simulation of CPAL in Simulink to506

study the control system performance for different scheduling options.507

Version February 8, 2018 submitted to Sensors 19 of 26

Time in seconds

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

U
n

it
 s

te
p

 r
e
s
p

o
n

s
e

0

0.2

0.4

0.6

0.8

1

1.2

 Improved step response when deadline is
lesser than input-to-output delay (# 1)

 Unit step signal

Actual step response when deadline is equal to
 input-to-output delay (# 2)

 Step response completely outside

 jitter margin

Settling time #2Settling time #1

0.30 s 0.44 s

Figure 9. Control performance using step response for different deadline assignments: equal, less and
greater than the input-to-output delay (resp. blue, green and red curves). The green curve (reduced
overshoot one) is obtained with a deadline value equal to 8.2 ms chosen such that the settling time
within 2% of the steady-state value is less than 0.3 s. When the control task deadline is greater than the
jitter margin, logically the system performs poorer with increased oscillations and overshoots.

5.3. Step 2) Software Design508

As explained earlier in Section 4.1, the controller model we designed at step 1 is now uploaded509

on the target platform to estimate a WCET bound. For the specifications of the controller with the510

sampling period of 12 ms (see Section 5.1), the execution time of the CPAL controller task measured511

using a logic analyzer is 34.4 µs. As explained in Section 4, WCET estimation can also be conveniently512

performed using the CPAL in-built �-stats feature. For the controller task developed, the maximum513

execution time value observed is around 200 µs including the scheduler overhead. When there are514

no preemptions as here, or a bounded number of preemptions, it is possible to include the scheduler515

overhead in the WCET of the task. To provision for a safety margin, we consider the execution time516

along with the scheduler overhead. We use this WCET and the admissible deadline of 8.2 ms obtained517

from the previous step to test the schedulability of the system. The schedulability analysis presented in518

Section 4.3 tells us whether the integrated task set (the controller under design plus the existing tasks519

on the ECU) is feasible or not. In our experimental setup, the task set passes the schedulability test.520

Once we obtain a stable controller model, we verify its run-time behavior on the target hardware.521

At run-time, it is possible in CPAL for a process instance to query its id, period, offset, both input522

and output jitters, priority, deadline and the activation times of the current and previous activations.523

Statistics can be collected and analyzed off-line, but it is also possible to visualize at run-time the524

variation of these quantities. Figure 10 shows a snippet of the code of the two monitoring tasks of525

Task 1, one for the input jitter and one for the output jitter, as well as their scheduling parameters.526

Here the choice has been made to have external tasks monitoring the jitters in order to not clutter the527

controller code. Although FIFO is the scheduling policy, simultaneous task releases are broken with528

the priority attribute (see Figure 10).529

Version February 8, 2018 submitted to Sensors 20 of 26

Figure 10. Code snippet of the two monitoring processes, including their scheduling parameters.

5.4. Step 3) Introspection Features for Run-time Verification530

1.4741 1.4742 1.4743 1.4744 1.4745 1.4746 1.4747 1.4748 1.4749 1.475 1.4751

Real-time in seconds ×104

0

0.1

0.2

in
p

u
t

ji
tt

e
rs

 i
n

 m
s
 (

h
ig

h
 p

ri
o

)

0

0.5

1

1.5

2

2.5

3

3.5

3.64

4

in
p

u
t

ji
tt

e
rs

 i
n

 m
s
 (

lo
w

 p
ri

o
)

Task 1

Task 2

input jitter margin

Figure 11. Global view of input jitter measurements of Task 1 and Task 2. The input jitter Jh of Task 1
(blue curve, right y-axis) varies over time below 2 ms, except in rare cases where it reaches 2.7 ms. The
input jitter of Task 2 (red curve, left y-axis) is bounded by 0.2 ms. The design assumption of input jitters
for Task 1 is less than 3.64 ms is met by the implementation.

Version February 8, 2018 submitted to Sensors 21 of 26

During model on target execution, the run-time monitoring tasks are respectively executed before531

the start of the controller task and immediately after. This can be for instance ensured by setting the532

priority attribute so that the input-monitoring process is at a higher priority than the controller task533

(3 in our case), while the output-monitoring task is at the immediate lower priority (1 in our case).534

The controller Task 2 is the cruise control manager of higher functional importance. It is activated first535

when both Task 1 and Task 2 are released simultaneously. The lower part of Figure 10 shows a sample536

console display of the input and output jitters during command-line execution in real-time mode537

(i.e. option −r in the command line) of the CPAL controller model with quiet option −q enabled. Here,538

jitters are recorded for 10 seconds on a Raspberry Pi2 model B with an ARM Cortex A7 processor.539

Figure 11 shows the input jitter measurements of the two controller tasks, Task 1 and Task 2, over540

a duration of 10 seconds. Even if Task 1 suffers delays from Task 2, we observe that its input jitters541

are well within the input jitter margin value of 3.64 ms (see Section 5.2.1). Likewise, Figure 12 shows542

the output jitter measurements for both controllers, and the cruise-control system meets the 5.45 ms543

output-jitter margin. These experiments, along with logic analyzer measurements confirm the design544

assumptions related to jitters. The logic analyzer set-up and captures files are available as additional545

references within the supplementary files provided with this article.546

Real-time in seconds ×104

1.4741 1.4742 1.4743 1.4744 1.4745 1.4746 1.4747 1.4748 1.4749 1.475 1.4751

o
u

tp
u

t
ji
it

e
r

in
 m

s
 (

lo
w

 p
ri

o
)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

5.45

O
u

tp
u

t
ji
tt

e
r

in
 m

s
 (

h
ig

h
 p

ri
o

)
0.35

0.4

0.45

0.5

0.55

0.6

0.65
Task 2

Task 1

ouput jitter margin

Figure 12. Global view of output jitter measurements of Task 1 and Task 2. The output jitter Jτ of Task 1
(blue curve, left y-axis) varies over time but remains below 0.65 ms. The output jitter of Task 2 (red
curve, right y-axis) is bounded by 0.63 ms. The design assumption of output jitters for Task 1 is less
than 5.45 ms is met by the implementation.

We enabled −q (quiet) option during model execution to get only the necessary console outputs,547

which are the jitter values during run-time. We record these jitter values for the purpose of visualization548

and to study whether the jitters are within the margins. To cross-check, we also measure the jitters549

using a logic analyzer with a 100 MHz sampling rate for about 10 seconds, as shown in Figure 13. For550

a particular job instance (zoomed portion of the figure), we measure an execution time of 34.58 µs551

for controller Task 1 and 25.19 µs for controller Task 2, which both run with a period of 12 ms. The552

monitoring processes (input and output) are here to help measure the input jitters, output jitters and553

input-to-output delay. We observe that when we do not include the printing of jitter values on the554

console, both input monitor and output monitor tasks (i.e. channels 1, 3 for Task 2 and channels 5, 7 for555

Task 1) consume less than 4 µs. Note that these monitoring tasks can be removed for the production556

code once the design is finalized to avoid overhead.557

Version February 8, 2018 submitted to Sensors 22 of 26

Figure 13. The input and output monitoring task activations for two controller tasks captured using a
logic analyzer. Both the controller tasks Task 1, Task 2 are activated with a period of 12 ms. Both are
different control algorithms which run for an execution time of 34.58 µs and 25.19 µs, respectively at
the highlighted job instant. The monitoring tasks execute only a fraction of the controller’s computation
time, typically less than 4 µs

6. Related Works558

In the literature of computing and control, there have been numerous studies on the effects of559

timing irregularities on control performance [2–5]. Cervin et al. coined the term jitter margin in [28],560

where the authors considered the output jitter margin under which the system still maintains its561

stability. In a subsequent work [15], Cervin extended the analysis to account for both the input and562

output jitters on the control performance of linear sampled-data control systems. In this paper, we563

integrate this analysis in a tool-supported design flow which guarantees the control performance on a564

given execution platform.565

A technical contribution needed in this work is a FIFO schedulability analysis for periodic tasks566

with offsets. Closely related are the results by George and Minet published in [29], who proposed a567

scheduling analysis for FIFO on a distributed system assuming sporadic task releases, and the results568

by Leontyev and Anderson [30], who developed a tardiness analysis for FIFO scheduling of soft569

real-time tasks, also assuming a distributed system and sporadic task releases. The two latter works570

did not apply directly to our task model, i.e., periodic task with release offsets.571

Sangiovanni-Vincentelli et al. discussed various methodologies to address the system design572

challenges in [31]. This work highlights the importance of Assume/Guarantee contracts during573

component design and explains how a contract can be applied to the design of a water flow control574

system. Derler et al. proposed in [7] that implicit timing assumptions are made explicit using design575

contracts to facilitate the interaction and communication between control and software domains.576

The authors discussed the support for timing-contracts-based designs using Ptolemy and Simulink.577

Benveniste et al. proposed in [32] to apply contracts to design methodologies. Importantly, the authors578

explained the mathematical concepts and operations necessary for the contract framework. All these579

works mentioned in this paragraph focused on the fundamental framework for design contracts,580

Version February 8, 2018 submitted to Sensors 23 of 26

such as contract algebra applied in system design, and timing contract visualization in modeling581

environment. In this work, we are concerned with the application of timing tolerance contract in582

our Model-Based Design flow used to develop control software, thus focusing on scheduling and583

implementation issues.584

In terms of related design environments, we identify two approaches with associated tools aiming585

to support control system design considering the influence of scheduling strategies:586

• TrueTime: this MATLAB/Simulink-based tool [2] enables the simulation of the temporal behavior587

of controller tasks executed on a multitasking real-time kernel. In TrueTime, it is possible to588

evaluate the performance of control loops subject to the latencies of the implementation. TrueTime589

offers a configurable kernel block, network blocks, protocol-independent send and receive blocks590

and a battery block. These blocks are Simulink S-functions written in C++. TrueTime is an591

event-based simulation using zero-crossing functions. The tasks are used to model the execution592

of user code and are written as code segments in a MATLAB script or in C++. It models a number593

of code statements that are executed sequentially.594

• T-Res: this more recent tool [4] is also developed using a set of custom Simulink blocks created to595

simulate timing delays dependent on code execution, scheduling of tasks and communication596

latencies, and verifying their impact on the performance of control software. T-Res is inspired597

from TrueTime and provides a more modular approach to the design of controller models598

enabling to define the controller code independently from the model of the task.599

These tools and methods focus on simulation and analysis. They both help the designer to study600

the control system performance under the effects of timing delays. The system designer then takes601

simulation analysis results into account to develop the embedded control algorithms in the next steps.602

This increases the possibility of distortions between the simulation model and the implementation.603

An advantage of our co-simulation modelling approach is that the same controller model used to604

evaluate the control performance during design phase can be re-used directly on the target hardware605

(in the coding and testing phase) to implement the system. As discussed in our previous work [5,19],606

the reduced development cycle favors efficient interactions between control and software engineers.607

The reader is referred to [5] for a review of CPAL in Simulink, TrueTime and T-Res development608

environments.609

7. Conclusion and Future Work610

The timing behavior of control tasks is a critical concern in real-time digital controllers. The delays,611

such as input jitters, or missed executions due to temporary overload, affect system performance612

and are to be accounted for in the design phase. Model-driven engineering has been successful for613

capturing the functional requirements during design, but non-functional requirements such as timing614

have been traditionally overlooked. This leads to a late verification of controller timing and, in the best615

case, to corrections at a stage when they are costlier. This work is a contribution towards conceiving616

a design environment for embedded control systems that capture all the necessary functional and617

non-functional requirements, while providing analysis, simulation and run-time capabilities.618

In this paper, we presented a framework based on timing tolerance contracts which fuses the619

stability and scheduling viewpoints during controller design. The three steps of the framework620

have been described: controller design verified by stability analysis and co-simulation, software621

design verified by schedulability and WCET estimation, and lastly, the implementation checked622

through run-time verification. The crucial advantage of our co-simulation approach based on model623

interpretation is that the same controller model verified in the design phase can be ported directly624

(without the need for code generation) to target hardware to implement the final system. This feature625

will ease the deployment and the update of code on distributed nodes, for instance in Industrial626

Internet of things (IIoT) applications.627

To exhibit the framework flow, we have presented the scheduling viewpoint using novel FIFO628

schedulability analysis for periodic task activations with offsets. As future work, we plan to extend the629

Version February 8, 2018 submitted to Sensors 24 of 26

framework to other schedulability analyses using tools such as Cheddar [33] and MAST [34] to support630

more scheduling options during scheduler synthesis. Another objective is to extend the approach631

to other important non-functional properties, foremost power consumption for next-generation632

Cyber-Physical Systems, which will require both analysis and modeling language support.633

Acknowledgments: This research is supported by FNR (Fonds National de la Recherche), the Luxembourg634

National Research Fund (AFR Grant n◦10053122).635

Author Contributions: Authors Sakthivel M Sundharam and Nicolas Navet conceived and developed the ideas636

behind the research. Sebastian Altmeyer carried out the schedulability analysis. Sakthivel M Sundharam wrote637

the paper under the supervision of Nicolas Navet. The experiments reported in this paper have been designed638

and performed by Sakthivel M Sundharam and Lionel Havet. Lionel Havet provided the CPAL tooling support.639

Conflicts of Interest: The authors declare no conflict of interest.640

Abbreviations641

The following abbreviations are used in this manuscript:642

643

BET Bounded Execution Time contract
CPAL Cyber-Physical Action Language
CPS Cyber-Physical Systems
ECU Electronic Control Unit
FIFO First In First Out
LET Logical Execution Time contract
MDE Model-Driven Engineering
PID Proportional Integral Differential
SDLC Software Development Life Cycle
StA Sensing to Actuation Delay
SWC Software Component
TOL Timing Tolerance contract
WCET Worst-Case Execution Time
ZET Zero Execution Time contract

644

References645

1. Lampke, S.; Schliecker, S.; Ziegenbein, D.; Hamann, A. Resource-Aware Control-Model-Based646

Co-Engineering of Control Algorithms and Real-Time Systems. SAE International Journal of Passenger647

Cars-Electronic and Electrical Systems 2015, 8, 106–114.648

2. Cervin, A.; Henriksson, D.; Lincoln, B.; Eker, J.; Årzén, K.E. How Does Control Timing Affect Performance?649

Analysis and Simulation of Timing Using Jitterbug and TrueTime. IEEE Control Systems Magazine 2003, 23.650

3. Torngren, M.; Henriksson, D.; Arzen, K.E.; Cervin, A.; Hanzalek, Z. Tool Supporting the Co-design of651

Control Systems and their Real-time Implementation: Current Status and Future Directions. Proceedings652

of the Conference on Computer Aided Control Systems Design, CACSD. IEEE, 2006, pp. 1173–1180.653

4. Morelli, M.; Cremona, F.; Di Natale, M. A System-level Framework for the Evaluation of the Performance654

Cost of Scheduling and Communication Delays in Control Systems. 5th International Workshop on655

Analysis Tools and Methodologies for Embedded and Real-time Systems, 2014.656

5. Sundharam, S.M.; Havet, L.; Altmeyer, S.; Navet, N. A Model-based Development Environment for657

Rapid-prototyping of Latency-sensitive Automotive Control Software. 2016 Sixth International Symposium658

on Embedded Computing and System Design (ISED), 2016, pp. 228–233.659

6. Ziegenbein, D.; Hamann, A. Timing-aware Control Software Design for Automotive Systems. Proceedings660

of the 52nd Annual Design Automation Conference. ACM, 2015, p. 56.661

7. Derler, P.; Lee, E.A.; Törngren, M.; Tripakis, S. Cyber-physical System Design Contracts. Cyber-Physical662

Systems (ICCPS), 2013 ACM/IEEE International Conference on. IEEE, 2013, pp. 109–118.663

8. Nuzzo, P.; Sangiovanni-Vincentelli, A.L.; Bresolin, D.; Geretti, L.; Villa, T. A Platform-Based Design664

Methodology With Contracts and Related Tools for the Design of Cyber-Physical Systems. Proceedings of665

the IEEE 2015, 103, 2104–2132.666

Version February 8, 2018 submitted to Sensors 25 of 26

9. Kirsch, C.M.; Sokolova, A. The Logical Execution Time Paradigm. In Advances in Real-Time Systems;667

Springer, 2012; pp. 103–120.668

10. Aminifar, A.; Samii, S.; Eles, P.; Peng, Z.; Cervin, A. Designing High-quality Embedded Control Systems669

with Guaranteed Stability. Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd. IEEE, 2012, pp. 283–292.670

11. Lincoln, B.; Cervin, A. Jitterbug: A tool for Analysis of Real-time Control Performance. Decision and671

Control, 2002, Proceedings of the 41st IEEE Conference on. IEEE, 2002, Vol. 2, pp. 1319–1324.672

12. Sundharam, S.M.; Altmeyer, S.; Navet, N. Poster Abstract: An Optimizing Framework for Real-time673

Scheduling. Proceedings of 22nd IEEE Real-Time and Embedded Technology and Applications Symposium674

(RTAS 2016), 2016.675

13. Altmeyer, S.; Sundharam, S.M.; Navet, N. The case for FIFO Real-time Scheduling. Technical report,676

University of Luxembourg, 2016.677

14. Gerber, R.; Hong, S. Slicing Real-time Programs for Enhanced Schedulability. ACM Trans. Program. Lang.678

Syst. 1997, 19, 525–555.679

15. Cervin, A. Stability and Worst-case Performance Analysis of Sampled-data Control systems with Input680

and Output jitter. American Control Conference (ACC), 2012. IEEE, 2012, pp. 3760–3765.681

16. Navet, N.; Fejoz, L.; Havet, L.; Sebastian, A. Lean Model-driven Development through682

Model-interpretation: the CPAL design flow. 8th European Congress on Embedded Real Time Software683

and Systems (ERTS 2016), 2016.684

17. The CPAL Programming Language. https://www.designcps.com/wp-content/uploads/cpal-intro.pdf.685

Accessed: 2018-01-13.686

18. Fejoz, L.; Navet, N.; Sundharam, S.M.; Altmeyer, S. Demo Abstract: Applications of the CPAL language to687

Model, Simulate and Program Cyber-Physical Systems. 2016 IEEE Real-Time and Embedded Technology688

and Applications Symposium (RTAS), 2016.689

19. Sundharam, S.M.; Altmeyer, S.; Navet, N. Model Interpretation for an AUTOSAR compliant Engine690

Control Function. 7th International Workshop on Analysis Tools and Methodologies for Embedded and691

Real-time Systems (WATERS), 2016.692

20. Navet, N.; Fejoz, L. CPAL: High-level Abstractions for Safe Embedded Systems. Proceedings of the693

International Workshop on Domain-Specific Modeling. ACM, 2016, pp. 35–41.694

21. Wilhelm, R.; Engblom, J.; Ermedahl, A.; Holsti, N.; Thesing, S.; Whalley, D.; Bernat, G.; Ferdinand, C.;695

Heckmann, R.; Mitra, T.; Mueller, F.; Puaut, I.; Puschner, P.; Staschulat, J.; Stenström, P. The Worst-Case696

Execution-Time Problem—Overview of Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst.697

2008, 7, 36:1–36:53.698

22. Cazorla, F.J.; Quiñones, E.; Vardanega, T.; Cucu, L.; Triquet, B.; Bernat, G.; Berger, E.; Abella, J.; Wartel,699

F.; Houston, M.; others. Proartis: Probabilistically Analyzable Real-time Systems. ACM Transactions on700

Embedded Computing Systems (TECS) 2013, 12, 94.701

23. Nasri, M.; Davis, R.I.; Brandenburg, B.B. FIFO with Offsets: High Schedulability with Low Overheads.702

to appear in the Proceedings of 24th IEEE Real-Time and Embedded Technology and Applications703

Symposium, (RTAS 2018). IEEE, 2018.704

24. Pellizzoni, R.; Lipari, G. Feasibility Analysis of Real-Time Periodic Tasks with Offsets. Real-Time Systems705

2005, 30, 105–128.706

25. George, L.; Rivierre, N.; Spuri, M. Preemptive and Non-preemptive Real-time Uni-processor Scheduling.707

Technical Report 2966, Institut National de Recherche et Informatique et en Automatique (INRIA), France,708

1996.709

26. Ripoll, I.; Crespo, A.; Mok, A.K. Improvement in Feasibility Testing for Real-time Tasks. Real-Time Sytstems710

1996, 11, 19–39.711

27. Speed Cruise Control System Using Simulink R© and Stateflow R© - System model. https://nl.mathworks.712

com/help/plccoder/examples/speed-cruise-control-system-using-simulink-and-stateflow.html.713

Accessed: 2017-08-30.714

28. Cervin, A.; Lincoln, B.; Eker, J.; Arzén, K.E.; Buttazzo, G. The Jitter margin and its Application in the715

Design of Real-time Control Systems. Proceedings of the 10th International Conference on Real-Time and716

Embedded Computing Systems and Applications. Citeseer, 2004, pp. 1–9.717

https://www.designcps.com/wp-content/uploads/cpal-intro.pdf
https://nl.mathworks.com/help/plccoder/examples/speed-cruise-control-system-using-simulink-and-stateflow.html
https://nl.mathworks.com/help/plccoder/examples/speed-cruise-control-system-using-simulink-and-stateflow.html
https://nl.mathworks.com/help/plccoder/examples/speed-cruise-control-system-using-simulink-and-stateflow.html

Version February 8, 2018 submitted to Sensors 26 of 26

29. George, L.; Minet, P. A FIFO Worst Case Analysis for a Hard Real-time Distributed Problem with718

Consistency Constraints. Proceedings of the 17th International Conference on Distributed Computing719

Systems (ICDCS ’97), 1997, pp. 441–448.720

30. Leontyev, H.; Anderson, J.H. Tardiness Bounds for FIFO Scheduling on Multiprocessors. Proceedings of721

the 19th Euromicro Conference on Real-Time Systems (ECRTS ’07), 2007, pp. 71–82.722

31. Sangiovanni-Vincentelli, A.; Damm, W.; Passerone, R. Taming Dr. Frankenstein: Contract-based Design for723

Cyber-Physical Systems. European journal of control 2012, 18, 217–238.724

32. Benveniste, A.; Caillaud, B.; Nickovic, D.; Passerone, R.; Raclet, J.B.; Reinkemeier, P.;725

Sangiovanni-Vincentelli, A.; Damm, W.; Henzinger, T.; Larsen, K.G. Contracts for System Design. PhD726

thesis, Inria, 2012.727

33. Singhoff, F.; Legrand, J.; Nana, L.; Marcé, L. Cheddar: A Flexible Real-time Scheduling Framework. ACM728

SIGAda Ada Letters. ACM, 2004, Vol. 24, pp. 1–8.729

34. Harbour, M.G.; García, J.G.; Gutiérrez, J.P.; Moyano, J.D. MAST: Modeling and Analysis Suite for Real-time730

Applications. Real-Time Systems, 13th Euromicro Conference on, 2001. IEEE, 2001, pp. 125–134.731

c© 2018 by the authors. Submitted to Sensors for possible open access publication under the terms and conditions732

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).733

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Framework for Fusing Control and Scheduling Viewpoints
	System Model
	Framework Steps

	Analysis and Co-simulation of Controller Design
	Jitter Analysis
	Controller Modeling in CPAL
	Co-simulation in MATLAB/Simulink

	Timing Verification Using Schedulability Analysis
	Worst-Case Execution Time (WCET) measurement
	FIFO Scheduling to Simplify Design and Verification
	FIFO Schedulability Analysis

	Evaluation and Results
	Motivating Example : Cruise Control ECU
	Controller Design
	Step 1. a) Stability Verification using Jitter Margin Concept
	Step 1. b) Co-simulation CPAL/Simulink

	Step 2) Software Design
	Step 3) Introspection Features for Run-time Verification

	Related Works
	Conclusion and Future Work

