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Abstract—The ever-growing complexity of present-day soft-
ware systems raises new and more stringent requirements on
their availability, pushing designers to make use of sophis-
ticated fault tolerance techniques far beyond the areas they
were traditionally conceived for, and bringing new challenges to
both the modelling and implementation phases. In this paper,
we propose a design pattern to model in a domain-specific
language one of the prominent fault-tolerant techniques, namely
the N-version programming. It can be integrated seamlessly
into existing applications to enhance their functional correctness,
while still preserving the timing characteristics, in particular the
sampling times. Besides, it is also designed in a way to ease the
automatic code generation. A counterpart of the same framework
is also implemented in a lower-level programming language, for
use when direct model execution is impractical, like in severely
resource-limited embedded targets.

Index Terms—Model-based design, Fault-tolerance, Industrial
cyber physical systems

I. INTRODUCTION AND RELATED WORK

As industrial Cyber Physical Systems become more and
more software intensive, software defects tend to become the
major source of faults, which impairs control quality and may
even lead to severe consequence. This foresees a strong need
of the adoption of suitable software fault-tolerant techniques
to improve system availability, reliability and dependability.
Introducing software diversity and redundancy proves to be
an effective mechanism towards this goal. Although most of
the seminal work on software fault-tolerance methods has been
performed in the late 70s, with the introduction of recovery
blocks (RB) [1] and N-version programming (NVP) [2], re-
search continues today, with further theoretical advances and
their application to specific domains [3].

Although NVP is one mainstream technique that has been
deployed in many mission-critical applications, it has been
criticized for not being cost effective from both the time
and effort point of view for what concerns deployment. This
also introduces difficulties to investigate its effectiveness and
its impact on the system during the design phase, further
aggravating modeling challenges that are already complex
by themselves. What is still lacking, to the extent of the
authors’ knowledge, is a way of relieving as much as possible
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designers and programmers from the effort of introducing
fault-tolerance elements in their work, as they go from design
to implementation. This is especially true since nowadays
there is a stronger need to incorporate fault-tolerance even
in resource-constrained embedded systems. Moreover, Model-
Based Design is steadily growing in popularity and now
demands a better integration of non-functional concerns, like
dependability, in the design flow. This work, which lays the
foundations for automating the addition of safety mechanisms
into an application, is a contribution in that direction.

In this paper, we propose a universal approach to model
NVP with the Cyber Physical Action Language (CPAL) [4],
which can be integrated seamlessly with existing system
models to enhance them with fault-tolerance features. Most
importantly, it is a general solution that can be borrowed
and re-used. This releases system designers from inner details
and burden of fault-tolerance theory and practice, so that they
can just focus on the application logic. Modularity is another
essential principle we followed during framework design. In
particular, the modelling of functional behavior (e.g. member
version logic) and non-functional characteristic (e.g. fault-
tolerance) are kept apart and isolated as much as possible.

Unlike its higher-level counterparts, namely modelling fault-
tolerance by means of constructing mathematical models [5],
our approach sheds more lights on details about implementa-
tion, up to the point of driving a fast implementation of NVP
with a low-level programming language. At the same time, it
still keeps a consistent link between model and implementa-
tion, unlike lower-level approaches do. For instance Hystrix [6]
provides a comprehensive fault tolerance framework. However,
besides having no direct links to any modeling language, it
is Java-centered and its main focus is on large, distributed
consumer systems. Other execution frameworks [7] achieve
high efficiency by means of binary code rewriting techniques,
which makes them not readily adaptable to the diverse pro-
cessors adopted in embedded systems, and may complicate
interaction with modeling tools and languages.

The paper is organized as follows: Section II recalls the
key concepts of NVP while Section III presents the main
features of the CPAL language, which is adopted in Section IV
to illustrate the full-fledged NVP modeling framework. Even
though models written in CPAL can run directly on certain
type of embedded platforms [4], we present in Section V
a NVP implementation based on a widely used low-level



programming language (namely C) derived from the high-level
model. This implementation can be used when there is no suf-
ficient resources to accommodate direct model interpretation.
Finally, in Section VI we draw some conclusions.

II. N-VERSION PROGRAMMING

The original concept of NVP implements the N-fold repli-
cation of the same computation, carried out by means of N
software modules, called member versions (the same terminol-
ogy and abbreviations as in [2] are used here for consistency).
Member versions are executed concurrently and operate on the
same inputs. At predefined cross-check points (cc-points) they
generate comparison vectors (c-vectors), that is, a representa-
tion of their internal state. A decision algorithm compares the
c-vectors corresponding to each cc-point and checks whether
or not they are in agreement, while also determining the overall
NVP output. Other outcomes of the decision are a feedback
towards member versions (for instance, to terminate a faulty
version) and recovery actions.

Even restricting the scope to decision algorithms based on
software voting, many approaches have been proposed in the
literature [8]. Among them majority voting, on which we focus
in the following, is in widespread use. Regardless of how it
is realized, the decision algorithm may form a single point
of failure, and hence its availability and safety are of great
importance. However, this issue can be tackled by means of
appropriate software design and implementation techniques
discussed, for instance, in [9]. Even more importantly, this
aspect does not affect the way NVP is modeled, at the level
of abstraction typical of the most common modeling tools.

To enhance diversity and reduce the probability of common-
mode failures, member versions may be independently de-
signed and implemented from the same initial set of require-
ments, which must also define cc-points location, c-vectors
content and format, the decision algorithm to be used, and
responses to decision outcomes. As a further protection against
other kinds of software and hardware faults, they may also
be developed using dissimilar programming languages and
deployed on distinct nodes of a distributed system.

Within these general principles, several NVP variants have
been introduced and can be adopted to protect against both
software and hardware faults. For instance, if the same
software is replicated for all member versions, but member
versions are deployed on distinct nodes, through spatial diver-
sification it will protect also from hardware faults affecting
those nodes. Accordingly, the modeling strategy must be
flexible enough to support and accommodate these variants
with minimal user involvement.

III. THE CPAL MODELLING LANGUAGE

CPAL [4] is a versatile language that can be used to model,
simulate, and program embedded systems, encompassing both
their functional and non-functional behavior, especially timing
and predictability concerns. At the same time, the syntax
of CPAL is close enough to the C language, which helps
smoothen the learning curve sometimes associated with other
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Fig. 1. The NVP modeling framework.

approaches, for instance, synchronous languages [10]-[12]. It
supports all basic data types found in typical programming
languages within a strong type system. For further expressive-
ness, it also offers more sophisticated native types like unsized
arrays (variable-length counted arrays used as function and
process parameters) and communication channels. Channels
have both FIFO queues and LIFO stacks as sub-types, thus
providing flexible but well-defined access policies.

A central element of CPAL is the process, which encapsu-
lates a Mealy Finite State Machine (FSM)—that is, a FSM in
which transition conditions are evaluated and possibly taken
before executing the code of the target state. By making
use of another native CPAL concept, time, processes can
be instantiated and scheduled for periodic execution. Event-
triggered systems can be described, too, by specifying process
instance activation conditions, which may work alone or be
considered together with the period of an instance. A process
in CPAL can be instantiated in the following way.

process Proc_Type: plperiod,offset] [conditions] (parameters);

if the first release of a process should not take place at time
zero, but at a specific time after time 0, an offset can be
indicated next to the period.

Another notable language feature is that, unlike other mod-
eling languages, it can be executed not only within a simula-
tion environment, but also on a real target platform by means
of an interpreter. This has the twofold goal of maintaining a
strong link between the modeling and the implementation/ex-
ecution phases, while decoupling the execution platform from
the application to verify the correctness of both independently.
Besides natively providing several, non-preemptive scheduling
policies on a single computing resource, CPAL also supports
true concurrency in simulation mode, by using a dedicated
interpreter per computing resource and properly synchronizing
them.

IV. THE NVP MODELING FRAMEWORK

Fig. 1 depicts the overall NVP modeling framework. It
consists of three kinds of component, that is the initiator,



member versions and the voter, which are modeled as inde-
pendent concurrent processes in CPAL. Center to the figure is
the member versions, which encapsulate alternative algorithms
that realize the same goal defined in the initial specification.
In other words, member versions are supposed to operate
on the same inputs and generate outputs of the same kind.
Correspondingly, each of them exports a comparison vector
and an execution status indicator (conclude its computation or
not) to the voter in suitable form.

When the comparison vectors from different member ver-
sions are available, the voter starts processing them according
to the decision algorithm embedded in it. More specifically,
the execution of the voter will be triggered depending on
the member version execution status, whereas the comparison
vectors, which includes the outputs calculated by a member
version and other state information, will be communicated
to the voter by means of gueues. The adoption of queues
permits to model NVP in a uniform way, regardless of how
its components will be deployed in practice, on a single node
or in a distributed manner.

Depending on the outcome of the decision algorithm (which
is generally implemented as certain kind of voting algorithm),
a member version may be considered as faulty and terminated
by the voter. This corresponds to the dashed arrows going from
the voter to the member versions in the figure.

The initiator is a new component introduced for the con-
venience of assisting modeling. Since one main goal of the
proposed framework is to allow system designers to explore
fault-tolerant technique(s) at early design phase, for instance
by patching it to different modules (represented as processes)
of the modeled system, it is important that the way the patched
module(s) interacts with other parts (e.g., extj, ...exts in
Fig. 1) of the system do not change. The initiator serves
exactly this purpose by grouping together the inputs the mod-
ule originally works on and dispatching them to the member
versions. Instead, the outputs will be the ones produced by the
voter and be provided to the remaining parts of the modeled
system. Similarly, queues are used for the communication
between the initiator and member versions because they not
only relax constraints on the type and number of data being
provided to member versions but also provide a convenient
way for synchronization. In the following, the module of a
modeled system that is to be enhanced with NVP will also be
referred to as the original process.

The number of member versions is configurable at will,
even though two or three member versions are most com-
monly seen. In particular, three member versions guarantee
the correctness of results in presence of a single faulty
member version. This case will be considered in the exam-
ple demonstrated below. System designers are just required
to implement the application-specific algorithms to be used
within each member version, and fill them into the skeleton
of the full-fledged NVP model defined in this framework,
a process that can easily be fully automated by means of
code transformation techniques. The following sections will
zoom in into individual NVP components, while the code of

processdef Initiator (in uint32: a, in uint32: b,
out queue<Replica_In>: inputs
in queue<uint32>: active_members)
{
var Replica_In: tmp;
state Main{
encapsulate_inputs(a, b, tmp);
loop over active_members with it {
inputs.push (tmp) ;
}
}
}

Fig. 2. Design pattern for the initiator.

the NVP is freely available in the CPAL examples library at
https://www.designcps.com/cpal-code-examples-index/.

A. Initiator

Even though it does not appear as a standalone concept
in the original design of NVP, the initiator is introduced and
serves three different purposes:

o First of all, member versions are assumed to run con-
currently and work on the same data, hence a suitable
mechanism must be employed to properly trigger their
execution. Actually, this aspect is considered as part of
the NVP execution environment illustrated in [2].

o Secondly, as it will be better explained in Section IV-D,
this way of modeling is essential to preserve the timing
characteristics of the original process.

o Thirdly, as mentioned before, the initiator plays a key role
in maintaining the same interfaces the original process
has with the rest of the system.

The initiator is mainly responsible for populating inputs to
(existing) member versions, which also triggers their execu-
tion. Since member versions are derived from the same initial
specification, the alternative algorithms implemented in them
work on the same inputs and outputs as defined in the initial
specification, which also corresponds to the inputs and outputs
specified in the original process. Besides, the initiator also
inherits other attributes from the original process, such as its
period, offset, and activation conditions, so that the timing
behavior will be maintained as well (see Section IV-D).

Fig. 2 sheds more light on the design pattern for the initiator.
For demonstration purpose, it is assumed that the original
process simply takes two inputs (a and b), calculates the sum
and outputs it. The inputs queue (line 2) represents the queue
used to exchange information between the initiator and the
member versions shown in Fig. 1, in particular it collects
inputs for member versions. Since the original process can
have various inputs (in terms of both number and data type)
whereas queue elements are homogeneous, Replica_In iS
a data structure designated to accommodate heterogeneous
inputs and provide a uniform interface between the initiator
and member versions. It also offers flexibility for extension. As
shown in Fig. 2, inputs (e.g., arguments a and b) will be first
encapsulated into this data structure by means of a standard
function (lines 8) before being delivered to member versions
through appropriate queue operation (lines 10-12).
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processdef Member Version (in queue<Replica_In>: x,
out queue<Comp_Vector>: z,
out queue<uint32>: status,
in uint32: id)

{

var uint32: a;
var uint32: b;
var uint32: sum;
var Replica_In:
var Replica_Out:
var Comp_Vector:

/% An uint32 holds the result here */
tmp_in;

tmp_out;

my_result;

common {
tmp_in = x.pop();
unfold_inputs (tmp_in, a, b);

/% Other common code goes here. x/

}

/% User-written FSM goes here without modification. =/
state Main{
sum = a + b;

}

finally{
encapsulate_outputs (sum, tmp_out);
my_result.mem_res = tmp_out;

my_result.mem_id = id;

z .push (my_result);
status.push (id) ;

Fig. 3. Design pattern for member versions.

It is worth noting that the concept of iterator implemented
in the CPAL language together with the 1oop over operator
allows to sweep through a collection (be it an array, a queue
or a stack) in a consistent way, regardless of the number of
elements available in it. active_members is a queue that
holds the decision from the voter regarding each member
version, whether it is considered to be faulty and its execution
should be terminated or not. If so, consequently, the initiator
will stop supplying inputs for it. In particular, the queue
contains identifiers of non-terminated member versions.

As we can see, the only variable part of the initiator is
the inputs that can be grouped into the Replica_In structure
and treated as a separate, small domain-specific model. The
remaining part is quite standard for automation regardless of
the original process to be NVP-enhanced.

B. Member Versions

Fig. 3 depicts the design pattern for the process definition
corresponding to a member version. A key feature of this pat-
tern is that it encapsulates the user-provided FSM, responsible
of implementing the member version logic and symbolized by
lines 21-23 of the listing. A member version works on the
inputs it receives from the initiator through the input queue.
In turn, it generates a comparison vector based on its own
state value obtained through the logic implemented in the
user-provided FSM and informs the voter about its execution
status through a status queue (lines 1-4). Parameter id is
an identifier that can be freely configured by system designers
and used to recognize a member version uniquely. As shown
in Section I'V-D, this is done at processes instantiation.

First of all, inputs encapsulated in the Replica_In data
structure and held in a queue element should be unpacked
(lines 14-15) before they can be referred to by the user-written
FSM as it does not work directly on the data structure. This
can be achieved by means of the unfold_inputs function.
Correspondingly, redundant variables are created (lines 6-8).
This way of doing aims at maximizing system designers’ free-
dom during the implementation of a member version algorithm
while keeping fault-tolerance related code as independent as
possible so as to minimize interference to the user code. It
is also worth noting that the unpacking operation should be
performed every time a member version is activated.

A CPAL process is mainly made up of state and transition
code. Besides, CPAL offers native support to specify code
shared among all states, by means of a common and finally
block. An execution step of a CPAL process starts with the
evaluation of state transitions which determines the next, target
state and then it proceeds with any pre-state common code (the
common block). Afterwards, it executes the code pertaining to
the target state, and, lastly, any post-state common code (the
finally block). As we can see, the common block provides
a convenient place to unpack inputs. Since the user-provided
FSM may already include some common code, the code for
unpacking the input data should stay at the very beginning.
As mentioned before, in order to let the user-written FSM
remain unaltered, local variables with the same name as the
parameters of the original process are created (lines 6-8). It
is important to remark that, even though the member logic
FSM shown in Fig. 3 is fairly simple (it merely adds the two
inputs), the design pattern supports arbitrary FSMs.

Moreover, the finally block makes it straightforward
for a member version to export its comparison vector and
notify its execution status to the voter (lines 25-32). The
comparison vector, represented by the Comp_vector data
structure, includes values calculated by a member version and
relevant for voting (encapsulated in the Replica_oOut data
structure), as well as a field which identifies the producer of
the comparison vector. The comparison vector is updated to
the voter via a queue shared between all member versions and
the voter. Besides, a member version also pushes its id to a
status queue which informs the voter that the corresponding
member version has completed its calculation. As shown in
Section IV-D, it will be used to trigger the execution of the
voter.

The above way of modeling indicates that the cross check
point is implicitly set to the end of each execution step, which
represents the finest granularity (namely, state level) ever
achievable. Coarser granularity can be achieved by making
the export of the comparison vector conditional, e.g. every
multiple number of periods.

C. Voter

The voter performs comparison based on the results pro-
duced by the member versions and generates outputs used
by other parts (e.g., exty, ..., exts in Fig. 1) of the modeled
system. Besides, it also takes suitable actions, terminate or



processdef Voter (in queue<Comp_Vector>: v,
in queue<uint32>: status_queue,
out uint32: sum,
out queue<uint32>: alive_members)
{
var Ballot_Grouping: majority;
var queue<Ballot_Grouping>: summary [NUMBER_OF_VERSIONS];

state Main{
Majority_Voting (v, majority, summary);

unfold_outputs (majority, sum);

alive_members.clear();
loop over v with it{
if (comp_ballot (it.current.mem_res, majority.value)) {
alive_members.push (it.current.mem_id);
}
}

v.clear();
status_queue.clear();

Fig. 4. Design pattern for the voter.

continue, for each member version according to the result
it provides. More specifically, continue indicates that the
result provided by a member version is in line with the one
returned by the voter, otherwise a member version will be
considered faulty and terminated. Termination of a member
version is achieved by disabling the activation condition of
the corresponding process, as shown in Section IV-D. Re-
activating the process can possibly be done by an application-
dependent re-activation condition.

As depicted in Fig. 4 lines 1-4, the voter works on the
comparison vectors and execution status indicators collected
from member versions, through the two different queues
explained in Section IV-B. In turn, the voter exports the same
outputs as specified in the initial requirement. Feedback to
member versions is delivered through a separate queue, namely
alive_members, which includes the id of non-terminated
member versions determined by the voter.

As remarked in Section II, majority voting (line 10) is used
as the decision algorithm in this paper. Like other decision
algorithms, it will be made available through library functions.
Hence, the exact code is not shown here for clarity. The
majority voting algorithm just requires in input the set of
the comparison vectors and it returns the majority result (if
it exists) and a summary that reports the statistics of the vote.

More specifically, it scans through elements in the queue,
keeps record of each occurred ballot and collects statistics,
for instance, how many member versions agree on a par-
ticular ballot. This information is kept in a separate queue
internal to the voter (line 7), whose elements are of type
Ballot_Grouping, which in turn is made up of two fields:
a field of type Replica_out and a counter.

Moreover, along the way, the voter keeps track of and
refreshes the ballot with the maximum number of member
versions supporting it. This makes it convenient to determine
whether or not a majority exists by simply comparing it
with the total number of member versions currently running
in the system. If majority is reached, the outputs will be

origin_proc[100ms]
(inputl, input2, outputl); =/

/+ process Original_Process:

process Initiator: initiator[100ms]
(inputl, input2, input_queue, active_members);

process Member_Version: ml[]
[member_alive (active_members, id)
and input_queue.not_empty ()
and (not exec_complete (status_queue, id))]
(input_queue, id, comp_vectors, status_queue);
process Voter: voterl[]
[comp_vectors.not_empty () and
comp_vectors.count () == status_queue.count ()]
(comp_vectors, status_queue,
outputl, active_members);

Fig. 5. Design pattern for process instantiation.

updated (line 12) according to the majority result obtained.
Otherwise, warning information should be returned to gather
further diagnostics and possibly implement fail-safe behavior.

After that, the voter evaluates whether the results produced
by a member version match the majority or not (by means
of the comp_ballot function) and flags member versions for
termination accordingly (lines 14—19). This operation can be
performed efficiently again with the iterator offered in CPAL,
with the it .current construct returns the current element in
the collection. At the end, the queue storing the comparison
vectors and the execution status indicators are cleared and reset
(lines 21-22), so as to prepare for the next round of execution.
As we can see, the voter code is standard as well and works
independently from the configuration of the total number of
member versions (denoted NUMBER_OF_VERSIONS).

D. Validation

Fig. 5 depicts how to construct the NVP module cor-
responding to an initial specification, from the individual
patterns described in previous sections, by means of a simple
but yet representative example. The original process (shown
commented out at the top of the figure) is just used as a
reference for readers. It is a periodic process that works on
two input variables and generates one output. For the sake of
clarity, Fig. 5 just shows the template for member version
instantiation regarding only one member. id is the unique
identifier to be specified for each member version, which is
also used to facilitate the termination of a member version.

Synchronization among different components of the NVP
module can be conveniently specified through the activation
conditions of process instances. More specifically, the execu-
tion of a member version (lines 8—10) depends on whether
it has been previously terminated by a voter (evaluated via
the member_alive function), whether there are inputs from
the initiator as well as it did not complete its computation
for the current round yet (determined by the exec_complete
function). On the other hand, the voter will be triggered upon
the completion of all existing member versions (lines 14-15).
As we can see, both the member versions and the voter are
modeled as pure event-triggered processes, while the initiator
can be either periodic, event-triggered, or hybrid depending
on the original process.



The correctness of the design patterns has been checked
experimentally in the value domain by artificially manipulating
the result calculated by a member version so that it is different
than the one generated by the other two versions. In this
case, the voter was always able to produce the right output
and identify the faulty member version. On the other hand,
since the member versions and the voter are purely event-
triggered, they will run after the initiator within the same cycle
when activation conditions are fulfilled. Hence, the execution
characteristics of the overall NVP module depend on the one
specified for the initiator, which is actually taken from the
original process. As a result, we could confirm that system
timing characteristics are also preserved.

In summary, NVP is modeled in such a general and compact
way that it can be flexibly applied to any module of the
modeled system without changing its original behavior. In
particular this holds true for what concerns, first, its way of
interacting with other modules of the same system and, second,
the correctness regarding both the value and time domain.
These advantages also make the NVP model composable,
namely it can be applied to more than one module at the same
time and system properties are still preserved. Moreover, the
same modeling strategy can be easily ported to other fault-
tolerant techniques, e.g. recovery blocks. Last but not least,
it is possible to automatically generate the NVP template
code shown through Figs. 2—5 by code transformation tools,
provided that the user-supplied member versions FSMs are
available.

V. C LANGUAGE NVP IMPLEMENTATION

The NVP implementation consists of a C-language [13]
library, called Ft in the following. The goal of the library
is to provide several basic building blocks, which users can
customize and blend with their own application code to build a
complete fault-tolerant system, bearing a strong likeness with
the design patterns presented in Section IV.

The choice of C as implementation language is the result
of a tradeoff. Its sheer diffusion makes Ft very portable,
even to targets with limited memory and processing resources,
which may poorly sustain the overhead of more sophisticated
runtime systems. Moreover, the C language is well-known
to most embedded system programmers, thus smoothing out
the learning curve to incorporate fault-tolerance code in their
software. Last, but not least, open-source toolchains for the C
language are readily available and relatively simple to config-
ure, build, and integrate with a Real-Time Operating System
(RTOS) [14]. These advantages offset the disadvantage that
C is a relatively low-level language and lacks some features
important for a proper, type-independent implementation of
Ft, most notably C++ templates or ADA generic units.

A. Lightweight C-Language Templates and Data Types

C++ language femplates allow programmers to define
classes and methods in which one or more data types and other
elements are replaced by placeholders and left unspecified.
These entities cannot be used directly—they cannot even be

compiled due to lack of data type information, for instance—
but can be instantiated one or more times. Placeholders are
filled upon instantiation, thus providing the missing informa-
tion and making code generation possible. In this way, the
resulting classes and methods can be tailored to specific data
types without source code duplication.

Several aspects of Ft benefit from this feature. For instance,
the implementation of the voter algorithm modeled in Sec-
tion IV-C should be written in a way that is independent on
the data type used for votes in a specific application. Another
example is the encapsulation of a member version, presented in
Section IV-B, within an RTOS tasks to facilitate its concurrent
execution. Also in this case the encapsulation code should
be developed only once, even though the data types used for
member version’s operands and return value may vary.

In the simplest cases, this goal can be accomplished
by multi-layer macro expansion. For instance, the follow-
ing fragment of code defines a template for the data type
FtBallot_type, Where type is a placeholder for another
data type. The data type being defined represents a ballot and
is a structure with two members: an identifier of the agent
that cast the vote, and the vote itself. Although the identifier
can invariably be represented as an integer, the vote data type
depends on the application. It can be specified by instantiating
the template with a specific type. As an example of invo-
cation, FT_BALLOT_TYPEDEF (uint32_t) gives rise to the
definition of the FtBallot_uint32_t data type containing a
uint32_t vote.

#define FT_BALLOT_TNAME (btype) \
FT_BALLOT_TNAME_X (btype)

#define FT_BALLOT_TNAME_X (btype) \
FtBallot_ ## btype
(1
#define FT_BALLOT_TYPEDEF (btype)
typedef struct {
int id;
btype vote;
} FT_BALLOT_TNAME (btype)

s

As a language-related technical note, it should be remarked
that the multiple layers of macro invocation shown in (1)
are indeed necessary. They force the expansion of argument
btype inhibited by the ## token concatenation operator [13,
Clause 6.10.3.3]. Unfortunately, this method is not adequate—
mainly because of code readability issues—when the macro
body becomes more complex as it happens, for instance,
when a whole function contains placeholders. In those cases, a
different approach has been used, involving the inclusion of a
source module within another, a possibility explicitly allowed
by the standard [13, Clause 5.1.1.1].

It should be noted that Ft uses placeholders also for cases
in which a regular function argument could apparently ac-
complish the same goal—for instance, the number of member
versions. The main advantage of placeholders is that their
value is known at compile time rather than at run time.
This helps to avoid dynamic memory allocation of working
storage local to the function, a C-language feature that requires
extensive use of pointers and is prone to state- and time-
dependent failures, possibly involving multiple tasks in the



TABLE I
MAIN DATA TYPES

Type Purpose
FtChannelKind_t

FtChannel_t

FtTaskFunction_t

FtTaskArg_t

FtTask_t

FtTimeout_ms_t
FtCollectorFrontend_t
FtStatus_t

FtBallot_btype
FtAllBallots_nball_btype
FtBallotGroupingEl_btype
FtBallotGrouping_nball_btype

Kind of channel

Generic channel

Generic task function

Task function arguments
Task

Timeout (in ms)

Collector frontend function
Status code

Single ballot, def. as in (1)
Array of ballots

Group of analogous ballots
Overall ballot statistics

system. For both reasons, it is often not used in code whose
goal is to be highly reliable and is forbidden in CPAL.

Table 1 summarizes the data types defined and used by
Ft. Basic data types, listed at the top of the table, have a
fixed definition, that is, a definition independent from the data
types used, for instance, by voters and member functions.
Among them, the most complex is FtChannel_t. It provides
an OS and network-independent streaming communication
channel among Ft-managed tasks, making their deployment
straightforward even on a distributed system. The data types
listed at the bottom of Table I are instead defined on top
of user-defined data type placeholders through the template-
based mechanism previously. In the table, placeholders that
become part of the derived data type name are typeset in
italics. More specifically, bt ype represents the votes data type,
while nball represents the number of member versions.

B. Member Version Encapsulation and Execution

Within Ft, at the lowest level of abstraction member ver-
sions are implemented as subroutines with two arguments. The
first argument (passed by value) gathers all input data, while
the second (passed by reference) holds results—that is, the
vote cast by the member version. The reason of grouping all
input data into a single argument, and likewise for results,
is to avoid functions with a variable number of arguments
that would make encapsulation harder to implement. Starting
from these user-defined functions, Ft provides two levels of
abstractions towards a full-fledged NVP system. The first level
abstracts away from member function deployment and user-
defined data types, while the second achieves underlying OS
independence. They are kept separate to improve modularity.

1) Task function encapsulation: The first abstraction en-
capsulates a member version function within a task function.
This function has a fixed, uniform prototype, determined by
the FtTaskFunction_t data type listed in Table I and is
suitable to be further encapsulated within a thread that can
then be scheduled for execution anywhere in the system. More
specifically, a task function has a single argument of type
FtTaskArg_t. The members of this structure are a pointer
to the task function itself (whose role will be better detailed
in the following) and two channels of type FtChannel_t, in

and out. They are used to read input arguments and deliver
the ballot to the voter, respectively.

The use of input and output channels instead of arguments
that directly hold (or point to) memory-resident data structures,
like it happened for member version functions, enables a very
flexible deployment of task functions in a distributed system.
In fact, channels support data transfer between functions even
across different hosts. What is more, using a message passing
communication model instead of shared memory, alleviates
synchronization issues regardless of the task scheduling policy.

As an additional benefit, the use of channels makes the
task function signature completely independent of user-defined
data types. On the other hand, including a pointer to the
task function itself in its arguments allows an argument of
the same data type to be used for the trampoline function
to be discussed next. Encapsulation is performed by macro
invocation, as FT_VERSION_TASK (name, id, f, intype,
btype), where f is the member function to be encapsulated,
intype and btype are the data types of its in and out argu-
ments, respectively, and name is the name of the task function
that the macro will define. Finally, id is an integer identifier
that will be used to uniquely tag its ballots and corresponds
to the id field of the ballot data structure mentioned in (1).

2) Task encapsulation: The section abstraction takes a task
function just described and instantiates a task to execute it,
independently from the underlying operating system and its
multitasking API. The portability of this abstraction and of
Ft as a whole has been confirmed by providing support for
operating systems based on the POSIX threads API [15]—
for instance, GNU/Linux and RTEMS [16]—as well as the
proprietary API of FreeRTOS [17].

The function FtTaskCreate (£, out, task) takes
a task function f to be encapsulated and its in and out
channels as inputs. It instantiates a task to execute £ on the
same node it is invoked on and fills a task identifier of type
FtTask_t when successful. The main issue to be addressed
within FtTaskCreate, to achieve operating system indepen-
dence, is that different multitasking APIs stipulate different
signatures for task entry points. For instance, in the POSIX
threads API the thread entry point is a function that returns
a void = that represents the task termination status, whereas
FreeRTOS does not directly support this feature. Moreover,
other OS may very well specify dissimilar signatures.

As a consequence, the OS-dependent part of the implemen-
tation of Ft TaskCreate must interpose a trampoline between
the OS-dependent task entry point and the task function
itself, an OS-independent Ft TaskFunction_t. Incorporating
a pointer to the task function itself within the FtTaskArg_t
allows the same pointer to this structure to be used as an
argument to both the trampoline and task functions. In this
way, the trampoline can invoke the task function through it,
and forward it to the task function with minimal overhead and
very light requirements on the underlying OS—virtually all
of them support passing a pointer as argument of a task. At
the same time, this technique closely parallels the modeling
method described in Section IV-B.

in,



C. Majority Voting

The voting mechanism, here illustrated by describing how
majority voting works, is articulated as a cascade of two
software modules, to be discussed in the order they process
ballots. Like for member version encapsulation, discussed in
Section V-B, the reason is to ensure a proper separation of
duties among them and make Ft more modular and flexible.
Both modules are implemented by means of template instan-
tiation, as described in Section V-A.

1) Collector: The collector is responsible of repeatedly
invoking a front end to collect ballots and move them into
a local, memory-resident data structure. To further enhance
modularity, the front end is a function that is responsible of
retrieving ballots one by one and make them available to the
collector, along with status information about the outcome
of the operation. In the scheme discussed in this paper, the
front end retrieves the ballot from the FtChannel_t used by
task functions as output (see Section V-B). Receive timeouts
reported by channels—indicating that a member version was
unable to provide its ballot in time—are also propagated to
the collector. As is done in other cases, in order to reduce
Ft development effort and enhance code quality, specific
collectors are generated from generic templates, having the
number of ballots to collect and their data type as placeholders.

2) Voter: The voter has an input argument of
type FtAllBallots_nball btype. It is an array of
FtBallot_btype defined as shown in (1) and contains
ballots from the collector. Its output contains vote statistics and
is of type FtBallotGrouping_nball_btype. Individual
elements, of type FtBallotGroupingEl_btype, summarize
input ballots that contain homogeneous votes. Accordingly,
they contain a vote count and the exemplar vote value. Voters
themselves are instantiated from voter templates that have
the expected number of ballots and the vote data type as
placeholders.

It should be noted that the interface between collector and
voter depends neither on the ballot source (handled by the
collector front end), nor on the voting algorithm (internal to
the voter). It is therefore possible to reprogram the system to
use a different voting algorithm in exactly the same way as it
is done in the modeling phase—that is, by simply replacing
the voter module. Similarly, collecting ballots from a differ-
ent source merely requires the replacement of the collector
front end, without affecting voter’s operation and correctness.
Recompilation of unaffected modules is not needed, either.

At present, there is no feedback from the voter to member
versions in Ft. Faulty versions are flagged for higher-level
reporting, but they are also kept for the whole lifetime of the
system, relying on the fact that invalid votes are consistently
discarded by the voter and channel timeouts detect missing
votes. The kind of feedback outlined in Section IV-C can easily
be added though, by post-processing and correlating voter’s
inputs and outputs. In our running example, correlation can
detect votes that disagree with the majority. Then, the member
versions that cast them can be tracked by means of the unique
identifier tagged to each vote (see Section V-B).

VI. CONCLUSION

In this work, we presented a framework for NVP modeling
which is not only faithful to the original concept of NVP
and but also offers a generic solution thanks to the design
patterns it defines. Most importantly, it keeps the fault-tolerant
mechanisms independent from the logic of the application.
Such patterns enable system designers to explore the use
of fault-tolerant mechanisms in the early design phases of
a system without being overwhelmed by implementation de-
tails, but just focusing on the application-dependent functional
logic. Building on this study, our ongoing work aims at a
complete automation of the code instrumentation for the NVP
as well as other prominent error-detection and error-correction
mechanisms. We are also developing a software fault-injection
framework to help system designers validate in a quantified
manner the effectiveness of the fault-tolerant mechanisms, and
thus the dependability of the system.
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