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Cyber Physical Systems
"... A cyber-physical system (CPS) integrates computing and
communication capabilities with monitoring and/or control of
entities in the physical world dependably, safely, securely,
efficiently and in real-time ..."

– S. Shankar Sastry
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Cyber Physical Systems
"... A cyber-physical system (CPS) integrates computing and
communication capabilities with monitoring and/or control of
entities in the physical world dependably, safely, securely,
efficiently and in real-time ..."

– S. Shankar Sastry

• System dependability is impaired by faults, including hw
faults, sw faults

• As CPS becomes more and more software centric,
software faults become the dominant factor

• Suitable fault prevention, fault removal, or fault tolerance
techniques should be employed.
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Software Fault Tolerance
Techniques that enable a system to tolerant software faults
remaining in the system after its development.
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State of the art

• Theoretical foundation of software fault tolerance is well
established in the 80s

• Generally, fault tolerance is introduced at a later phase of
system development, e.g. implementation phase

• The selection of fault tolerance techniques is mainly driven
by experience

• Few work is done on including fault tolerant analysis at the
system design phase

Model based design is an enabling technique to this direction
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Model Based Design

Models play an important role in various engineering
disciplines. They are used to guide the development process.

• Advantages
• Support rapid prototyping
• Early verification of system correctness
• Explore different design and implementation choice
• Early detection of design errors

• Widely adopted in automotive, aerospace, etc
• Popular tools include UML, Matlab/Simulink, SCADE,

AADL
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Automated FT/FI framework
Enhance the dependability of CPS by introducing fault
tolerance features, without changing its functional behavior and
still honoring the non-funtional requirements, e.g. timings.
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N Version Programming
NVP
N-fold replication of the same computation, carried out by
means of N software modules, called member versions.

• Member versions run in parallel, operating on the same
inputs;

• Result reached by consensus, e.g majority voting
• Requires member versions to generate comparison

vectors at predefined cross-check points
• Feedback to the member versions depending on the result:

termination/continuation, recovery actions

• Error protected: software design faults
• Basic principle: increase software diversity
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N Version Programming
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CPAL
The Cyber Physical Action Language (CPAL)
A language offers high-level abstractions that are suitable for
the modeling, simulation, verification and progamming of CPSs.

• Finite State Machine (FSM) based
• Expressiveness: functional and non-functional behavior,

e.g. timings
• Modeling language & development language
• Timing equivalence between simulation time and run-time
• Supported platforms:

• Windows 32/64bit, Linux 64bit, Mac OS X
• Raspberry Pi, Freescale FRDM-K64F, Embedded

Linux 64bit, Embedded Windows 32/64bit
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CPAL
CPAL sample

processdef P(params) {
common {

code
}

state Warning {
code

}
on (cond) {code} to Alarm_Mode;
after (time) if (cond) to Normal_Mode;

finally {
code

}
}

process P: inst[period,offset][cond](args);

@cpal:time:inst{
annotation code

}

Elementary execution step
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The NVP modeling framework
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Design goal
Software patterns
“... Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of
the solution to that problem in such a way that you can use this
solution a million times over, without ever doing it the same way
twice ...”

– Christopher Alexander

• Re-usability
• Seamless integration with existing system model

• Maintain the same interface with surroundings
• Preserve the functional behavior and non-functional

properties

• Code-generation friendly
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CPAL model: the initiator
Driving force of the NVP process

• Collect and populate data to member versions for
processing by means of the communication channel

• Preserve the interface with other modules and the timings
of the original process

processdef Initiator(in uint32: a, in uint32: b,
out queue<Replica_In >: inputs
in queue<uint32 >: active_members)

{
var Replica_In: tmp;

state Main{
encapsulate_inputs(a, b, tmp);

loop over active_members with it {
inputs.push(tmp);

}
}

}
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CPAL model: member versions
Operate on the input data, done within the user-provided FSM

processdef Member_Version(in queue<Replica_In >: x,
out queue<Comp_Vector >: z,
out queue<uint32 >: status ,
in uint32: id)

{
common{

tmp_in = x.pop();
unfold_inputs(tmp_in , a, b);

/* Other common code goes here. */
}

/* User -written FSM goes here without modification. */
state Main{

sum = a + b;
}

finally{
encapsulate_outputs(sum , tmp_out );
my_result.mem_res = tmp_out;
my_result.mem_id = id;

z.push(my_result );
status.push(id);

}
}
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CPAL model: member versions
Export a comparison vector and indicate its execution status to
the voter, by means of communication channel
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CPAL model: member versions
Cross-check point is implicitly set to the end of each execution
step

processdef Member_Version(in queue<Replica_In >: x,
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CPAL model: the voter
Perform majority voting based on the comparison vectors from
the member versions

processdef Voter(in queue<Comp_Vector >: v,
in queue<uint32 >: status_queue ,
out uint32: sum ,
out queue<uint32 >: alive_members)

{
state Main{

Majority_Voting(v, majority , summary );

unfold_outputs(majority , sum);

alive_members.clear ();
loop over v with it{

if(comp_ballot(it.current.mem_res , majority.value )){
alive_members.push(it.current.mem_id );

}
}

v.clear ();
status_queue.clear ();

}
}
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CPAL model: the voter
Export output data to other modules of the modeled system
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CPAL model: the voter
Determine whether a member version should be terminated

processdef Voter(in queue<Comp_Vector >: v,
in queue<uint32 >: status_queue ,
out uint32: sum ,
out queue<uint32 >: alive_members)

{
state Main{

Majority_Voting(v, majority , summary );

unfold_outputs(majority , sum);

alive_members.clear ();
loop over v with it{

if(comp_ballot(it.current.mem_res , majority.value )){
alive_members.push(it.current.mem_id );

}
}

v.clear ();
status_queue.clear ();

}
}
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Process coordination
The initiator preserves the interface to the surrounding systems
and timings

/* process Original_Process: origin_proc[100ms]
(input1 , input2 , output1 ); */

process Initiator: initiator[100ms]
(input1 , input2 , input_queue , active_members );

process Member_Version: m1[]
[member_alive(active_members , id)
and input_queue.not_empty ()
and (not exec_complete(status_queue , id))]

(input_queue , id, comp_vectors , status_queue );

process Voter: voter1[]
[comp_vectors.not_empty () and
comp_vectors.count() == status_queue.count()]

(comp_vectors , status_queue ,
output1 , active_members );
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Process coordination
The initiator populates inputs to member versions
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Process coordination
The member versions carry out its own computation and report
their comparison vectors
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Process coordination
The voter determines the outputs of the NVP module and
health of member versions
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Concurrency of member versions
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NVP implementation in C

Collector
C_ARRAY 
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Voter task
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Conclusion
• Propose software patterns corresponding to NVP
• Can be seamlessly integrated with the existing system

model, without changing its interface and timings.
• Derive a C language implementation of NVP from the

CPAL model
• The same methodology can be profitably applied to the

modeling of other fault tolerant mechanisms

• Future work:
• Automatic code generation by means of code

transformation
• Automated fault injection for the validatation of the fault

tolerant mechanism
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Thank you for your attention
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