
Towards Seamless Integration of N-Version
Programming in Model-Based Design

Tingting Hu *, Ivan Cibrario Bertolotti **, Nicolas Navet *

* National Research Council of Italy – IEIIT, Torino, Italy
** University of Luxembourg – FSTC, Esch-sur-Alzette, Luxembourg

Sept. 12 – 15, 2017, Limassol, Cyprus

Table of Content

1 Motivation

2 The NVP modeling framework

3 Models and implementation

4 Conclusion

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 2 / 21

Cyber Physical Systems
"... A cyber-physical system (CPS) integrates computing and
communication capabilities with monitoring and/or control of
entities in the physical world dependably, safely, securely,
efficiently and in real-time ..."

– S. Shankar Sastry

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 3 / 21

Cyber Physical Systems
"... A cyber-physical system (CPS) integrates computing and
communication capabilities with monitoring and/or control of
entities in the physical world dependably, safely, securely,
efficiently and in real-time ..."

– S. Shankar Sastry

• System dependability is impaired by faults, including hw
faults, sw faults

• As CPS becomes more and more software centric,
software faults become the dominant factor

• Suitable fault prevention, fault removal, or fault tolerance
techniques should be employed.

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 3 / 21

Software Fault Tolerance
Techniques that enable a system to tolerant software faults
remaining in the system after its development.

Software
Fault

Tolerant
Techniques

Single
Version

Software
Techniques

Multi-
Version

Software
Techniques

N-version
Programming

Recovery
Block

N self-
checking

Programming

Error
Detection

Exception
Handling

Process
Pairs

Data
Diversity

Checkpoint
& Restart

…

t/(n-1)
Variant

Programming

…

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 4 / 21

State of the art

• Theoretical foundation of software fault tolerance is well
established in the 80s

• Generally, fault tolerance is introduced at a later phase of
system development, e.g. implementation phase

• The selection of fault tolerance techniques is mainly driven
by experience

• Few work is done on including fault tolerant analysis at the
system design phase

Model based design is an enabling technique to this direction

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 5 / 21

Model Based Design

Models play an important role in various engineering
disciplines. They are used to guide the development process.

• Advantages
• Support rapid prototyping
• Early verification of system correctness
• Explore different design and implementation choice
• Early detection of design errors

• Widely adopted in automotive, aerospace, etc
• Popular tools include UML, Matlab/Simulink, SCADE,

AADL

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 6 / 21

Automated FT/FI framework
Enhance the dependability of CPS by introducing fault
tolerance features, without changing its functional behavior and
still honoring the non-funtional requirements, e.g. timings.

Drive the
process of

By
Simul.

Guide the
selection

of

Analysis
Fault

Tolerance
Mechanisms

Fault Models
Fault Injection

Techniques

Dependability
Quantifier

&
Analyzer

Code
Generation

Original
System
Models

Applied to

Derive

Code
transf.

Inject faults by code
transformation

Satisfied

Fa
il
ed

R
e-

se
le

ct
io

n
Original
System
Models

Model Patched
with Suitable

FT
Mechanism

FT-enhanced
System
Models

Targeting safety-critical real-time systems

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 7 / 21

N Version Programming
NVP
N-fold replication of the same computation, carried out by
means of N software modules, called member versions.

• Member versions run in parallel, operating on the same
inputs;

• Result reached by consensus, e.g majority voting
• Requires member versions to generate comparison

vectors at predefined cross-check points
• Feedback to the member versions depending on the result:

termination/continuation, recovery actions

• Error protected: software design faults
• Basic principle: increase software diversity

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 8 / 21

N Version Programming
NVP
N-fold replication of the same computation, carried out by
means of N software modules, called member versions.

• Member versions run in parallel, operating on the same
inputs;

• Result reached by consensus, e.g majority voting
• Requires member versions to generate comparison

vectors at predefined cross-check points
• Feedback to the member versions depending on the result:

termination/continuation, recovery actions

• Error protected: software design faults
• Basic principle: increase software diversity

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 8 / 21

N Version Programming
NVP
N-fold replication of the same computation, carried out by
means of N software modules, called member versions.

• Member versions run in parallel, operating on the same
inputs;

• Result reached by consensus, e.g majority voting
• Requires member versions to generate comparison

vectors at predefined cross-check points
• Feedback to the member versions depending on the result:

termination/continuation, recovery actions

• Error protected: software design faults
• Basic principle: increase software diversity

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 8 / 21

N Version Programming

Version 1

Version 2

Version n

…

Input OutputDecision
Algorithm

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 9 / 21

CPAL
The Cyber Physical Action Language (CPAL)
A language offers high-level abstractions that are suitable for
the modeling, simulation, verification and progamming of CPSs.

• Finite State Machine (FSM) based
• Expressiveness: functional and non-functional behavior,

e.g. timings
• Modeling language & development language
• Timing equivalence between simulation time and run-time
• Supported platforms:

• Windows 32/64bit, Linux 64bit, Mac OS X
• Raspberry Pi, Freescale FRDM-K64F, Embedded

Linux 64bit, Embedded Windows 32/64bit

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 10 / 21

CPAL
CPAL sample

processdef P(params) {
common {

code
}

state Warning {
code

}
on (cond) {code} to Alarm_Mode;
after (time) if (cond) to Normal_Mode;

finally {
code

}
}

process P: inst[period,offset][cond](args);

@cpal:time:inst{
annotation code

}

Elementary execution step

Activation
Condition Annotation code

Transition
condition?

Transition code

Move to new state

common code

State code

finally code

Continuation?

True

True

False

False

True

Sc
he

du
le

r

Pr
oc

es
s

False

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 11 / 21

The NVP modeling framework

Proc X

ext5 ext6ext4

ext2 ext3ext1

⇒

Initiator

M1 M2 Mx…

Voter

C-Vector1 C-Vector2 C-Vectorn

status1 status2 statusn

ext5 ext6ext4

ext2 ext3ext1

Member versions

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 12 / 21

The NVP modeling framework

Proc X

ext5 ext6ext4

ext2 ext3ext1

⇒

Initiator

M1 M2 Mx…

Voter

C-Vector1 C-Vector2 C-Vectorn

status1 status2 statusn

ext5 ext6ext4

ext2 ext3ext1

Member versions

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 12 / 21

The NVP modeling framework

Proc X

ext5 ext6ext4

ext2 ext3ext1

⇒

Initiator

M1 M2 Mx…

Voter

C-Vector1 C-Vector2 C-Vectorn

status1 status2 statusn

ext5 ext6ext4

ext2 ext3ext1

Member versions

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 12 / 21

Design goal
Software patterns
“... Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of
the solution to that problem in such a way that you can use this
solution a million times over, without ever doing it the same way
twice ...”

– Christopher Alexander

• Re-usability
• Seamless integration with existing system model

• Maintain the same interface with surroundings
• Preserve the functional behavior and non-functional

properties

• Code-generation friendly

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 13 / 21

Design goal

Software patterns
Patterns capture important practice in a form that makes the
practice accessible

• Re-usability
• Seamless integration with existing system model

• Maintain the same interface with surroundings
• Preserve the functional behavior and non-functional

properties

• Code-generation friendly

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 13 / 21

Design goal

Software patterns
Patterns capture important practice in a form that makes the
practice accessible

• Re-usability
• Seamless integration with existing system model

• Maintain the same interface with surroundings
• Preserve the functional behavior and non-functional

properties

• Code-generation friendly

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 13 / 21

CPAL model: the initiator
Driving force of the NVP process

• Collect and populate data to member versions for
processing by means of the communication channel

• Preserve the interface with other modules and the timings
of the original process

processdef Initiator(in uint32: a, in uint32: b,
out queue<Replica_In >: inputs
in queue<uint32 >: active_members)

{
var Replica_In: tmp;

state Main{
encapsulate_inputs(a, b, tmp);

loop over active_members with it {
inputs.push(tmp);

}
}

}

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 14 / 21

CPAL model: member versions
Operate on the input data, done within the user-provided FSM

processdef Member_Version(in queue<Replica_In >: x,
out queue<Comp_Vector >: z,
out queue<uint32 >: status ,
in uint32: id)

{
common{

tmp_in = x.pop();
unfold_inputs(tmp_in , a, b);

/* Other common code goes here. */
}

/* User -written FSM goes here without modification. */
state Main{

sum = a + b;
}

finally{
encapsulate_outputs(sum , tmp_out);
my_result.mem_res = tmp_out;
my_result.mem_id = id;

z.push(my_result);
status.push(id);

}
}

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 15 / 21

CPAL model: member versions
Export a comparison vector and indicate its execution status to
the voter, by means of communication channel

processdef Member_Version(in queue<Replica_In >: x,
out queue<Comp_Vector >: z,
out queue<uint32 >: status ,
in uint32: id)

{
common{

tmp_in = x.pop();
unfold_inputs(tmp_in , a, b);

/* Other common code goes here. */
}

/* User -written FSM goes here without modification. */
state Main{

sum = a + b;
}

finally{
encapsulate_outputs(sum , tmp_out);
my_result.mem_res = tmp_out;
my_result.mem_id = id;

z.push(my_result);
status.push(id);

}
}Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 15 / 21

CPAL model: member versions
Cross-check point is implicitly set to the end of each execution
step

processdef Member_Version(in queue<Replica_In >: x,
out queue<Comp_Vector >: z,
out queue<uint32 >: status ,
in uint32: id)

{
common{

tmp_in = x.pop();
unfold_inputs(tmp_in , a, b);

/* Other common code goes here. */
}

/* User -written FSM goes here without modification. */
state Main{

sum = a + b;
}

finally{
encapsulate_outputs(sum , tmp_out);
my_result.mem_res = tmp_out;
my_result.mem_id = id;

z.push(my_result);
status.push(id);

}
}Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 15 / 21

CPAL model: the voter
Perform majority voting based on the comparison vectors from
the member versions

processdef Voter(in queue<Comp_Vector >: v,
in queue<uint32 >: status_queue ,
out uint32: sum ,
out queue<uint32 >: alive_members)

{
state Main{

Majority_Voting(v, majority , summary);

unfold_outputs(majority , sum);

alive_members.clear ();
loop over v with it{

if(comp_ballot(it.current.mem_res , majority.value)){
alive_members.push(it.current.mem_id);

}
}

v.clear ();
status_queue.clear ();

}
}

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 16 / 21

CPAL model: the voter
Export output data to other modules of the modeled system

processdef Voter(in queue<Comp_Vector >: v,
in queue<uint32 >: status_queue ,
out uint32: sum ,
out queue<uint32 >: alive_members)

{
state Main{

Majority_Voting(v, majority , summary);

unfold_outputs(majority , sum);

alive_members.clear ();
loop over v with it{

if(comp_ballot(it.current.mem_res , majority.value)){
alive_members.push(it.current.mem_id);

}
}

v.clear ();
status_queue.clear ();

}
}

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 16 / 21

CPAL model: the voter
Determine whether a member version should be terminated

processdef Voter(in queue<Comp_Vector >: v,
in queue<uint32 >: status_queue ,
out uint32: sum ,
out queue<uint32 >: alive_members)

{
state Main{

Majority_Voting(v, majority , summary);

unfold_outputs(majority , sum);

alive_members.clear ();
loop over v with it{

if(comp_ballot(it.current.mem_res , majority.value)){
alive_members.push(it.current.mem_id);

}
}

v.clear ();
status_queue.clear ();

}
}

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 16 / 21

Process coordination
The initiator preserves the interface to the surrounding systems
and timings

/* process Original_Process: origin_proc[100ms]
(input1 , input2 , output1); */

process Initiator: initiator[100ms]
(input1 , input2 , input_queue , active_members);

process Member_Version: m1[]
[member_alive(active_members , id)
and input_queue.not_empty ()
and (not exec_complete(status_queue , id))]

(input_queue , id, comp_vectors , status_queue);

process Voter: voter1[]
[comp_vectors.not_empty () and
comp_vectors.count() == status_queue.count()]

(comp_vectors , status_queue ,
output1 , active_members);

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 17 / 21

Process coordination
The initiator preserves the interface to the surrounding systems
and timings

/* process Original_Process: origin_proc[100ms]
(input1 , input2 , output1); */

process Initiator: initiator[100ms]
(input1 , input2 , input_queue , active_members);

process Member_Version: m1[]
[member_alive(active_members , id)
and input_queue.not_empty ()
and (not exec_complete(status_queue , id))]

(input_queue , id, comp_vectors , status_queue);

process Voter: voter1[]
[comp_vectors.not_empty () and
comp_vectors.count() == status_queue.count()]

(comp_vectors , status_queue ,
output1 , active_members);

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 17 / 21

Process coordination
The initiator populates inputs to member versions

/* process Original_Process: origin_proc[100ms]
(input1 , input2 , output1); */

process Initiator: initiator[100ms]
(input1 , input2 , input_queue , active_members);

process Member_Version: m1[]
[member_alive(active_members , id)
and input_queue.not_empty ()
and (not exec_complete(status_queue , id))]

(input_queue , id, comp_vectors , status_queue);

process Voter: voter1[]
[comp_vectors.not_empty () and
comp_vectors.count() == status_queue.count()]

(comp_vectors , status_queue ,
output1 , active_members);

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 17 / 21

Process coordination
The member versions carry out its own computation and report
their comparison vectors

/* process Original_Process: origin_proc[100ms]
(input1 , input2 , output1); */

process Initiator: initiator[100ms]
(input1 , input2 , input_queue , active_members);

process Member_Version: m1[]
[member_alive(active_members , id)
and input_queue.not_empty ()
and (not exec_complete(status_queue , id))]

(input_queue , id, comp_vectors , status_queue);

process Voter: voter1[]
[comp_vectors.not_empty () and
comp_vectors.count() == status_queue.count()]

(comp_vectors , status_queue ,
output1 , active_members);

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 17 / 21

Process coordination
The voter determines the outputs of the NVP module and
health of member versions

/* process Original_Process: origin_proc[100ms]
(input1 , input2 , output1); */

process Initiator: initiator[100ms]
(input1 , input2 , input_queue , active_members);

process Member_Version: m1[]
[member_alive(active_members , id)
and input_queue.not_empty ()
and (not exec_complete(status_queue , id))]

(input_queue , id, comp_vectors , status_queue);

process Voter: voter1[]
[comp_vectors.not_empty () and
comp_vectors.count() == status_queue.count()]

(comp_vectors , status_queue ,
output1 , active_members);

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 17 / 21

Concurrency of member versions

P1 Pn… …

P1 I Pn… M1 M2 M3 V …

Px

Ci

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 18 / 21

NVP implementation in C

Collector
C_ARRAY
of ballots

Voter task

Majority Voter

Collector template
<nball, btype>

ft_collector_template.c

Majority Voter template
<nball, btype>

ft_voter_mv_template.c

Compile-time template instantiation
(nball=3, btype=uint32_t)

Channel
FtChannel_t

Encapsulation

Version n

Version → Task
encapsulation template

<name, id, f, intype, btype>

Compile-time template instantiation
(intype=int32_t, btype=uint32_t)

name and id are used to uniquely name the task
function, f is the function to be encapsulated

Encapsulation

Version 1

…

N-Version
tasks

voter.cpal

Library module/template

Instantiated library template

CPAL model

User/application code

Individual
ballots

Initiator
Initiator template

<nv, argtype>
ft_initiator_template.c

nvp_initiator
.cpal

Version
arguments member_version.cpal

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 19 / 21

Conclusion
• Propose software patterns corresponding to NVP
• Can be seamlessly integrated with the existing system

model, without changing its interface and timings.
• Derive a C language implementation of NVP from the

CPAL model
• The same methodology can be profitably applied to the

modeling of other fault tolerant mechanisms

• Future work:
• Automatic code generation by means of code

transformation
• Automated fault injection for the validatation of the fault

tolerant mechanism

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 20 / 21

Thank you for your attention

Tingting Hu Towards Seamless Integration of N-Version Programming in Model-Based Design 21 / 21

	Motivation
	The NVP modeling framework
	Models and implementation
	Conclusion

