
An Optimizing Framework for Real-time Scheduling
Sakthivel Manikandan Sundharam, Sebastian Altmeyer, Nicolas Navet

University of Luxembourg
FSTC/Lassy

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

firstname.lastname@uni.lu

Abstract—Scheduling is crucial in real-time applications. For
any real-time system, the desired scheduling policy can be se-
lected based on the scheduling problem itself and the underlying
system constraints. This paper discusses a novel optimization
framework which automates the selection and configuration of
the scheduling policy. The objective is to let designer state
the permissible timing behavior of the system in a declarative
manner. The system synthesis step involving both analysis and
optimization then generates a scheduling solution which at run-
time is enforced by the execution environment.

I. Introduction

Real-time scheduling is now a mature and well established
research field. Many scheduling policies and results have been
proposed and derived over the last four decades providing
efficient scheduling solutions for most hardware platforms
and application-level needs. Tools and frameworks have been
developed implementing these scheduling algorithms and their
analyses [1]. To the best of our knowledge, apart from few
early works in that direction for specific execution platforms
(e.g. [8]), none of these frameworks target the automatic
configuration and selection of the best suited policy and
parameters in a systematic manner.

Fig. 1. Inputs/Outputs of the Framework

In this paper, we present an optimizing framework that
selects the best suited scheduling configuration for a partially

specified task set and the given system constraints. In Figure 1,
we illustrate the structure of the framework. The inputs to the
framework are:
• a partially specified task set (see Section II),
• the performance objectives, and
• the hardware constraints.

The framework performs the selection of the policy, optimiza-
tion of the scheduling parameters, and outputs
• the complete task set specification and scheduling con-

figuration,
• the performance metrics of the different scheduling algo-

rithms.
This work is motivated by the ongoing research on timing-
augmented Model-Based Design [7] at the University of Lux-
embourg. Our aim is to develop the framework such that the
system designer only focuses on the high-level timing behavior
of the system, where the implementation choices of the low-
level timing behavior are taken care of by the framework.
The framework fits in the early design phases as a device to
automate system synthesis and hide away from the designer
the complexity of the underlying runtime environments.

II. Defining The Framework

The inputs is the high-level description of the scheduling
problem, whereas the output is the scheduling solution with
all the required configuration parameters. In this section, we
define inputs and outputs of our optimizing framework.

Partially specified task set:
We assume that the application is composed of n
tasks {τ1, . . . τn}. The task set is defined partially
to reflect the freedom in the selection of certain
parameters. Each task τi is specified by a tuple

τi : (Ci,Ti,Di),

a) where Ci is the worst-case execution time and is
assumed to be given as single value,
b) the execution period Ti is potentially defined as a
range of permissible values,
c) the deadline relative to the release time of the task,
denoted by Di, is given as single value. A range of
values for the deadline would be futile, as the run-
time environment must ensure the system is feasible
with respect to the most stringent deadline.



Fig. 2. Flow of the scheduler synthesis framework

Performance objectives:
Examples for performance objectives are through-
put (efficiency), power consumption, predictability
constraints such as requirement of uninterrupted ex-
ecution for a task, minimal activation or end-of-
execution jitters, etc. These objectives are achieved
for example by minimizing the periods within the
allowed range in order to reduce the power consump-
tion. If for instance throughput is to be maximized,
the frequency of execution is increased.

Hardware constraints:
The selected hardware further constraints the choices
of the framework. Typical hardware, and more gen-
erally constraints of the run-time environment, are
number of processing cores, preemptiveness, type of
the system clock (e.g., global clock or distributed
clock in the system). These inputs are accounted by
the framework in the derivation of the scheduling
solution.

Scheduling configuration:
The main outcome of the framework is the schedul-
ing solution, that is the complete specification of
the task set and the scheduling configuration. This
scheduling configuration covers all low-level config-
uration parameters and no further input is needed
to execute the application on the target system. In
addition to the policy, scheduling parameters include
periods, offsets and possibly deadlines and priorities.

Performance metrics:
The performance of the candidate algorithm is eval-
uated by selected performance metrics. Typical per-
formance metrics are schedulability (a task set is
schedulable or not under a policy), numerical values
of the response times and jitters, power-consumption,
or the ability of the system to grow further measured
for instance by the minimum slack time.



III. Scheduler Synthesis

In this section, we explain the core of the framework,
i.e., the scheduler synthesis. In contrast to other approaches
towards scheduler synthesis [3], we do not generate new or
non-standard scheduling policies. Instead, we focus on the
selection of the most appropriate scheduling policy (including
parameter optimization) amongst a set of well-studied and
widely-implemented real-time scheduling policies. In Fig-
ure II, we illustrate the general steps of our framework.

In a first step, the framework performs a pre-selection of
the scheduling policies on the basis of the system constraints
and the hardware to execute the application. All policies that
violate some of the requirements are excluded at this step.
Policies that are compliant with the requirements under some
side-constraints are considered with those side-constraints.
This step results in the set of candidate policies which are
subject to the actual parameter optimization.

The next step, the parameter optimization is then highly
specific to the policy, and thus has to be performed for
each policy individually. Also, the type of parameters to be
optimized differ. However, we can build on a large variety
of existing methods and techniques. For the selection of the
periods, for instance, we can use a recent work by Nasri et
al. [6], offsets in case of offset-aware policies can be optimized
using [5] and for the selection of priorities, we have optimality
results such as [2].

Real-time scheduling problems are in most contexts NP-
hard. Due to the computational complexity of the problems, an
optimal scheduling solution cannot be guaranteed. However,
the candidate optimization techniques and heuristic algorithms
have proven to be robust and lead to satisfactory solutions in
many application domains (e.g., [5, 6, 8]).

IV. Illustrating Example

We illustrate our approach using the following task set Γ:

Ci Ti Di constraints objective
τ1 1 [4 : 5] 4 reduce period
τ2 2 [4 : 8] 8 non-preemptive reduce period
τ3 6 [15 : 24] 24 -

Constraints and scheduling policies

A side constraint besides meeting deadlines is that task
τ2 has to be executed non-preemptively and the objective
is to minimize the values of the periods of τ1 and τ2 (i.e.,
increase frequency to achieve a better control of the system).
To simplify the example, we restrain ourselves to a limited
number of well-known scheduling policies: earliest deadline
first (EDF), both preemptively and non-preemptively (EDF-
NP), fixed-priority preemptive scheduling (FPP), fixed-priority
non-preemptive scheduling (FPNP), and FIFO:

EDF EDF-NP FPP FPNP FIFO

The policy selection identifies that all policies can indeed
satisfy the system constraints, but in case of the preemptive

policies, i.e., EDF and FPP, further constraints are required to
ensure the non-preemptive execution of τ2:

EDF EDF-NP FPP FPNP FIFO
X X X X X

if D2 ≤ Di if pr2 = 1

All non-preemptive policies fail since the execution time of
τ3 exceeds even the largest permissible period of τ1. Hence, the
search has to concentrate only on the two remaining policies
EDF and FPP (both with the appropriate side constraints).

EDF scheduling

Using EDF we are able to achieve a processor utilization
of 1 and execute tasks τ1 and τ2 with the smallest possible
periods. This is the optimal result and it will be selected as
the scheduling solution with the following parameters for the
task set:

Ci Ti Di

τ1 1 4 4
τ2 2 4 4
τ3 5 20 20

For this particular scheduling problem — as well as in many
other cases — EDF is the optimal solution. This situation
changes when more complex side and system constraints are
in place, or when we consider realistic scheduling overheads.
The cache-related preemption delays (CRPDs) constitute an
example of such overheads that, in this particular case,
penalize preemptions. As a result, the advantages of EDF
scheduling over FPPS often becomes negligible under CRPD
overheads [4], As future work, we plan to include the modeling
of these overheads, which will lead to other, less trivial optimal
solutions.

V. Conclusions and Discussions

We are developing an optimizing framework that consid-
ers as inputs a partially specified task set, the performance
objectives of the system and the constraints of the run-time
environment, importantly the hardware support. The frame-
work synthesizes the scheduling solution that best meet the
requirements. Our framework currently includes a number
of basic real-time scheduling policies and ongoing work is
devoted to enrich the set of available policies with customized
scheduler that make optimal use of underlying execution
hardware and improvements in system behavior. This work
is a contribution towards a more automated design process
building on the wide set of techniques and results developed
within the real-time system community.

The applicability and precision of the framework is deter-
mined by the optimization algorithms and schedulability anal-
yses. But these algorithms and heuristic techniques are limited
in precision. Consequently, for some scheduling problems, the
framework cannot guarantee optimality. A future work is to
develop techniques such as lower bounds to estimate how far
is a solution computed with the framework from the optimal
solution.



Acknowledgment

This research is supported by FNR (Fonds National de la
Recherche), the Luxembourg National Research Fund (AFR
Grant n°10053122).

References

[1] K. Altisen, G. Gossler, A. Pnueli, J. Sifakis, S. Tripakis,
and S. Yovine. A framework for scheduler synthesis. In
Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium (RTSS), Dec. 1999.

[2] N. C. Audsley. On priority asignment in fixed priority
scheduling. Inf. Process. Lett., 79(1):39–44, May 2001.

[3] M. Grenier and N. Navet. Fine tuning MAC level protocols
for optimized real-time QoS. IEEE Transactions on
Industrial Informatics, special issue on Industrial Com-
munication Systems, 4(1), 2008.

[4] W. Lunniss, S. Altmeyer, and R. I. Davis. A comparison
between fixed priority and edf scheduling accounting for

cache related pre-emption delays. Leibniz Transactions on
Embedded Systems, 1(1), 2014.

[5] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion.
Multisource software on multicore automotive ecus com-
bining runnable sequencing with task scheduling. IEEE
Transactions on Industrial Electronics, 59(10):3934–3942,
Oct 2012.

[6] M. Nasri and G. Fohler. An efficient method for assigning
harmonic periods to hard real-time tasks with period
ranges. In 27th Euromicro Conference on Real-Time
Systems (ECRTS 2015 ), pages 149–159. IEEE, 2015.

[7] N. Navet, L. Fejoz, L. Havet, and S. Altmeyer. Lean
model-driven development through model-interpretation:
the CPAL design flow. In Embedded Real-Time Software
and Systems (ERTSS2016), January 2016.

[8] N. Navet and J. Migge. Fine tuning the scheduling of tasks
through a genetic algorithm: Application to Posix1003.1b
compliant OS. IEE Proceedings Software, 150(1):13–24,
2003.


