Design, Simulate, Execute
Embedded Systems

Author: Nicolas.Navet@designcps.com
Version: 1.16 - October 21, 2016

o0 0

Hello, World

processdef Hello World()
h state Main {
I0.println("Hello, world");
¥
¥

process Hello World: a_task[188ms]();

o o Hello, World

intuitive and
productive

processdef Monitor_Proc(

vt baols aTarm)” Finite State Machine
const uint8: THRESHOLD = 30; embedded

Normal Mode

state Norl‘mal_l'-'lode { in the process

y on (a_port > THRESHOLD)Yfter (25) if (a_port < THRESHOLD)
on (a_port > THRESHOLD)
{
alarm = true; Alarm_Mode
¥

to Alarm_Mode;

state Alarm_Mode {

[*

1
after (2s) if (a_port < THRESHOLD)
to Normal_Mode;

* f
/
!

~ uint8: sensor#l; /* mapped to some I/0 port */

~ uint8: sensor#2; /* and updated upon activation of the proces
~ bool: first_alarm = false;

~ bool: second_alarm = false;

% f

/* Instantiation of periodic monitoring processes
process Monitor_ Proc: pl[5@@ms](sensor#l, first_alarm);

/* Second process is only executed when first_alarm is true */
process Monitor_Proc: p2[1l@@ms][first_alarm](sensor#2, second_alarm);

Preamble: a language can be textual,
graphical or a mix of both

Examples from the Scade
quick reference card

« Plus: Addition of several inputs

CPAL = textual programming with visual representation of
facets out of the code: logic of the automata, data-flow between
processes, task activation

o0 0

of a program

/#* Definition of functions */
my_ fTunction(in wuint32: a, out bool:

/#* Definition of processes */
processdef My Process(

in bool: doesX,

out uint32: aValue)

g

f & & [/

/* Global wvariables
var uint32: a_global wvariable;
var bool: user_driven_wvar = true;

J *

Instantiation of processes, aka Tasks

§ % %

A periodic process

process My Process: task1[588ms](user_driven _wvar, a_global variable);

/* init() is optional, it will be executed once at startup */
init() {

)

¥ [

CPAL Naming Convention

Names of user-defined S Names of

process, structures, { - enumerations values,
states, and enum. shall be o s and constant shall be
Mixed_Case_With_Under [l) UPPER CASE WITH

scores struct My Structure UNDERSCORE
{ —
uint8: field a;
: My Enum: field b;

}
Names of variables,

var uint8: the global variable;

Use cpal lint and / arguments, functions,
- my_tunction(
cpal2x to resp. i bool: a flag, and tasks shall be
check and format { out uintlé: the result) lower case with
code according to underscores

this naming }
convention

O

o o
o]
O o

Why a programming language dedicated to
Embedded Systems ?

o General purpose programming languages do not offer the right
abstractions for:

O Periodic activities and real-time scheduling
o0 Time measurements and manipulation

O Finite state machines Both functional and non-

o0 High-level interfaces to I/Os functional concerns

O etc

o Design for facilitating the writing of correct embedded code (incl.
restrictions)

o “Write once, Run Anywhere” of Java does not guarantee anything
about timing behaviour on different platforms

o
u\e"’
- www.designcps.com @ @

Processes: recurring activities whose
logic Is described as Finite State Machine

www.designcps.com

Finite-state Machines to
describe the logic of processes

FSM =
states + transitions

Timed transition
and condition

Timed transition: after a
certain time in a state,
go to another state fai gl = 5) jon (reset)

Boolean condition

Value that triggers a timed
. transition can change
. dynamically at run-time

Why using Finite State Machines ?

o Excellent way to describe the logic of programs that control
“reactive” systems (=systems that react on external events)

o Non-ambiguous visual representation - one state at a time,
transitions well defined

o Easy to execute, easy to simulate, properties can be verified by
model-checking or simulation

o However, there is a variety of FSMs that may differ on when to
trigger a transition, when leaving/entering a state, etc

Questlon: draw the FSM that describes the functioning of :
a turnstile which allows someone to go through only
after a coin has been inserted, discuss design choices

...

[wikipedia]

[wikipedia]

10

FSM In CPAL process

processdef MyProc(in uint32: argl, in bool: reset, out bool: arg3)

{
state Init { First state is

arg3 = false;
} default state

on (true) to Main;

state Main {

)y
after(5ms) if (reset) to Init;

after(1ls) to Idle;/as‘ Codeina

on (arel > 3) 1 transition
arg3 = true;

} to Main; b

ctate Tdle ¢ {L,—""\ Code in a state

arg3 = false;
}

on (reset) to Init;

rocess MyProc:

process

int32: a = 5; .
Vo bool: b o falee; Good practice: global
var bool: c; variables used in a

process must be passed
as arguments of the

11

A process Is

One “step” of execution

of the FSM ——=—

Execute
a transition first (when

periodically activated

F/Atranm

can be fired ?

Execute transition code
Move to next state

Execute common code

Stay in current state

possible) then the
current state
- best responsiveness
to external events

Execute state-specific code
\

Wait until period has elapsed

Activation condition . Yes
met or none ?

www.designcps.com @ @

12

o0

o

\Q" playground?path=talks/tutorial/samples/tut-execution-order.cpal

Execution order

processdef A Process()

static var bool: toggle = true;

common{
I0.println(" common");

¥
CO1nnon
state A{

I0.println("state A");

¥

on (toggle) {
IO.println("transition
toggle=talse;

} to B;

on (toggle)jon (not toggele) state B{
I0.println("state B");
¥
on (not toggle) {
I0.println{"transition
toggle=true;
} to A;
¥

process A _Process: pl[1@8ms]();

o Try it out to check execution order at http://www.designcps.com/cpal-

13

http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal

o0

o

—

Activation conditions serve to implement functioning

Process Instantiations

processdef MyProcess()

{
;tate Main { Periodic process
}
var bool: aTriggerCondition = true; Periodic with an
offsets: first
/* Periodic process */ instance is
process MyProcess: taskl[16@ms](); p
released at time
/* Periodic process with initial offset */ “offset’

process MyProcess: task2[2@6ms, 1eems]();

/* Periodic with additional execution condition *;‘L. Periodic instance

rocess MyProcess: task3[eé@@ms][aTriggerCondition R . : :
P Y : 1L &8 10 with activation

condition

modes and execute activities only if specific
conditions are met (e.g., event such as an alarm).

-

14

Process instantiations cont'd

offset period
€ >

/* Periodic process */
process MyProcess: taskl[1@8@ms]();

/* Periodic process with initial offset */
process MyProcess: task2[266ms, 1@ems]();

15

Hands-on exercise #1

. A] Write a process controlling the turnstile
B] Write a process with period 50ms that:

\/stay in statel during 200ms (where a variable i is incremented),
v'then goes to state2 after having setito 0 in transition. In state 2,
i is incremented and the FSM goes to state3 when i equals 4.

. v'in State3, i is decremented and the FSM goes back to statel

. when it has stayed at least 200ms in state3 and i is less than or equal
1o 0. '

C] Verify that the process runs as expected by executing the model and
’ examining the changes of states and transitions triggered

www.designcps.com @ @ 16

Solution to exercise #1-B)

Statel

after (200ms)

State2 fter (200ms) if (1 == 0)

Stated

processdef A Process()

¥

static var int32:
state Statel {
i=1+ 1;
I0.println("In statel with
} aftter (208ms) {
i=8;
I to Statel;

state State2 {

i=1+1;

I0.println("In state2 with
} on (i == 4) to State3;

state Stated {

i =1 - 1;

I0.println("In state3 with i=%d", 1);
} after (208ms) if (i <= @) to Statel;

process A _Process: pl[5@ms]();

17

Process Introspection

processdef aProcess()

{
state Main {

println("pid %u", self.pid);)
println("period %t",self.period); /‘ current and previous
println("offset %t",self.offset); L« /‘\instances obtained

println("curr %t",self.current_activation); f,a

First time when the

the CPU

println("last %t",self.previous_activation);
if (self.current_activation > @ms) {
assert((self.current_activation-self.previous_activation) == self.period);

Introspection is helpful to validate timing
behaviour and implement adaptive
process aProcess: pi[ieems](); behaviours, such as algorithms that
depend on the rate of execution or the
jitter of the process

18

e 11 4

Simulation and Real-Time
Execution Mode

Designer’s objective: model
behaves as the real-system

Development

iming Accurate Buzzwords: :
. “digital mockups”, :
“digital twins”

Simulator

g &
E e —
= .é\‘&é\"
£ - . <
Execution N
Engine ¢ A solution for timing is to inject

delays in the model so as to
reproduce the time it takes to
execute the code on a specific
platform

www.designcps.com @ @ 20

CPU

CPAL’s 2 Execution Modes

Simulation mode Real-Time mode

Execution is as fast as possible v Real-time execution

(e.g. periods are not respected) v' Code (instructions, read/write
Code executed in zero time — |/Os) takes time to execute —
except if stated otherwise with depends on the platform
timing annotations v CPAL can be executed on bare
CPAL interpreter is hosted by hardware or hosted by an OS
an OS

v" No access to real 1/Os

Overhead data on Freescale FRDM-K64F:
v'max. activation jitter: 40us

v timer interrupt: 0.6us

v' context switch overhead: 2us

www.designcps.com @ @ 21

Logical time vs physical time

YL LN N RO process Hello World: a_task[1@ems]();
Start of execution \l, End of execution 1‘

Question: where do the delays between start and end come from ?

3| 2 lai] rl.\T [t

@ @ Real-time

execution mode

v" In simulation mode:

@_@_@_@_Simulation o order of events is ensured by a
mode logical time
0] 100 200 [300 p

o Execution is as fast as possible (not
in real-time) and code is executed in
zero logical time

v In real-time mode, only physical time
£l

www.designcps.com @ @ 22

Real-time scheduling

processdef Simple()
{
state Main {
I0.println("relative deadline: %t", self.deadline);
I0.println("process priority: %u", self.priority);
}
}

process Simple: pl[i1ems]();
process Simple: p2[15ms]();

Scheduling policies: FIFO (by default), Fixed Priority non-preemptive

- (FPNP), Earliest Deadline First non-preemptive (EDFNP)

23

Simulating execution times

processdef OneShortOnelLong()
{

@cpal:time {
Statel.execution_time

@cpal:time {
State2.execution_time

on (true) to Statel;
}

process OneShortOnelLong: aTask[6@ms]();

Timing annotations can be derived by built-in monitoring
facilities and are respected by the simulator

24

Execution time In transitions too

Execution time of
complete state

processdef A Process()
*-\.
state First {
@cpal:time {
First.execution_time = Sms;

}

on (true) {
A _Named_Block: {
@cpal:time {
A Mamed_Block.execution_time = 10ms;
1
¥

} to Second;

state Second {

¥
on (true) { V
A Second Named Block: {

@cpal:time {
A Second Named Block.execution time = 56ms;
}
h

} to First;

Execution time of
the named blocks

25

www.designcps.com

omplete development environment

from http

5 | fascpal (C\Users\nna
File Edition Display Run ?

Architecture | Tasks

//designcps.com

Flight Application Software

Functional view

ane_ug [1s, 18]

fdir [100ms]

str_acq [108]

tm_tc [10s]

on (is_on) on ('is_on)

/ N

| Blinking |

\ S

mn ('is_on)

Finite State Machine describing the logic
of a process

[New* [medi2d14_teodorovdhaussylerouscpal | cescpal | cafetiere-a-dosette.cpal | challengel-siml-adapted.cpal | fes.cpal |

1

/* Failure Detection Isclation and Recovery */
processdef FDIR(in bool: gyro, in bool: gps, in bool:
state Main {

o3.push (trus);
1

star, in bool: gncus, ot

1o U s L b

MO WD

/* Guidance and navigation -- flot montant */
processdef GNC US (in channel<bool>: fdir, ocut beool: ol, ocut bool: o2) {

Code

var uint32: i = 0;

while (i < 10) {
assert (fdir.notEmpty());
fdir.pop():
i=1i+ 1;

z
2
2
2
2
2
2
2
3
3
3
3

H
assert (fdir.isEmpty());

/* Guidance and navigation
46 processdef GNC DS(in bool:
47 state Main {

—— flot descendant */
il, out bool: pde, out bool:sgs, out bocl: pws) {

Ay

b€|

b‘gl

o

o fﬁfﬁ #qu

Activation of the tasks over time

i

27

http://designcps.com/

Zero install with the CPAL- Playground
http://designcps.com/cpal-playground

+ no install, run
from everywhere

+ nice to experiment
with the example
programs
available on-line

000
0 oo

CPAL Playground

struct MyStruct {
int32: a;

var uint32: aGlobal;
var bool: anotherGlobal;

processdef MyProc(in wint32: aPort,
e Main {
println("c");
anotherPort = (aPort > 58);

}
}

process MyProc: aTask[186ms](aGlobal,

-

Simulation Tasks diagram

2.000000090008 : ASSIGN] Assign

out bool: anotherPort)

anotherGlobal);

2.000002008808: STATE] process "MyProc”, instance

©.220200009298 : PRINTLN] <
0.020200002608 : ASSIGN] Assign
8.190200080898 : PRINTLN] c

no way to change
variable values at
run-time or run
scenarios

no graphical
representation of
FSMs and
functional
architecture

No real-time mode

Not embedded
programming !

28

http://designcps.com/cpal-playground
http://designcps.com/cpal-playground
http://designcps.com/cpal-playground
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/

CPAL-Editor on all platforms with Java Web
Start - https://www.designcps.com/binaries/

+ the graphical
editor on all
platforms with
Java (Raspberry,
MacOS, etc)

from designcps.com

00
I f
D50

) |
i) s on)

|
|
Eal w Cal

- Have to add
security
exception to Java

- Have to manually
install Graphwiz
and command-
line tools

29

https://www.designcps.com/binaries/

Command-line tools overview

$ cpal parser input.cpal output.ast
—> .ast file created on success, parse errors listed otherwise

Run
Run
run <date in ms> Run
run +<time in ms> Run

the process(es) released at the next activation time
until maximum execution time

until absolute date time (if greater than current date)
for a relative period of time

list Display all global variables, their wvalues, and all processes status
time Display current date time (in seconds fleoat number)

quit End

Assignment:

the simulaticn and exit the interpreter

<global variable> = <value>

> Non-interactive mode, e.g. on embedded Linux or Raspberry
$ cpal interpreter -i —-q input.ast

-i : interactive mode toggled on, -q : quiet mode (less
- verbose)

www.designcps.com @ @ 30

Avalilable CPAL ports

PLATFORMS EXECUTION HOSTED ACCESS TO EXECUTABLE
MODE BY ANOS? HARDWARE?
Windows 32/64bit Simulation Yes No cpal_interpreter
Windows 32/64bit Real-time Yes No cpal_interpreter_
winmbed
Linux 64 bit Simulation Yes No cpal_interpreter
Linux 64 bit Real-Time Yes Yes cpal_interpreter_
linuxmbed
Mac OS X Simulation Yes No cpal_interpreter
Freescale FRDM- Real-Time No Yes NA, an image
K64F is uploaded
Raspberry Pi Real-Time and Yes Yes cpal_interpreter_
(Raspbian) Simulation raspberry

Best real-time performance

oy
“aNJ o
o0

www.designcps.com @ @ 31

Ex. of Interpreter command lines

cpal interpreter my program.ast:execute indefinitely in simulation mode
and non-interactive mode

cpal interpreter -i —-q my program.ast: execute in simulation mode and
interactive mode and quiet mode

cpal interpreter -p NPFP my program.ast:execute with processes
scheduled under the non-preemptive Fixed Priority policy instead of FIFO, and non-
interactive mode

cpal interpreter linuxmbded -q my program.ast:execute in Linux,
indefinitely in real-time mode, non-interactive mode and quiet mode

cpal interpreter winmbded -r -i -s scenario.sce
my program.ast :execute on Windows in real-time mode the scenario defined in
file scenario.sce then remain in the interpreter in interactive mode

cpal interpreter --silent --time 5000 my program.ast:execution
in simulation and non-interactive mode during 5000ms, with no outputs to the console

cpal interpreter raspberry -r -v --stats --time 5000
my program.ast: execute on Raspberry in real-time, non-verbose and non-
interactive mode during 5000ms with the monitoring of the Worst-Case Execution
oy
:[pnes (WCET) of the processes
o o]

- 32

truct Item {
uint32: quantity,

Data types in CPAL

www.designcps.com

Overview on types

v" No untyped data and no pointer in CPAL

v" No memory is dynamically allocated / freed at run-time

v’ Basic types: bool, uint8, int64, float32, time64, etc
v User-defined types: array, enum and structure

v’ Collections: stacks and queues

v Process is a built-in type for an activity of the system (similar to
threads or tasks in other contexts)

CPAL is a strongly typed language - conversions between types
have to be explicit: uint8.as (x), uintl6.as (x),
uint32.as(x), uinte6ed.as(x), 1int8.as(x), intlo6.as (x),
int32.as(x), int64.as(x), timeocd.as(x), bool.as(x).
Binary reinterpretation through type.cast (x)

Qo0
o]
- www.designcps.com @ @

34

Overview on types cont'd

v" Variables of basic types and user-defined types are all initialized to
zero at creation (i.e., all bits are set to zero)

v Arrays are uni-dimensional

v No char or string type but writing to terminal is possible with
FO. prinE) andidorpr int In ¢ functions

v’ Integers can be specified in decimal or hexadecimal (OxA1E = 2590)

enum Fruit {

APPLE,
BANANA,
ORANGE
g Example of
struct Item { Complex types
uint32: quantity;

Fruit: f;
s

/* there is no typedef in CPAL */

35

Primitive data types

Type Range of values Print format
uint8 0.. 255 You
uint16 0.. 65535 You
uint32 0..2°° -1 You
uint64 0..2%-1 Yeu
int8 -128.. 127 Jod
int16 -65536..65535 Jod
int32 -2°1.2°1] Ged
int64 -253,.2%] Ged
float32 -3.4e38..3.4e38 Tof
float64 -1.7e308..1.7e308 Gof
time64 0..2764-1 ps ot
bool false, true b

Min and max value of each type:
type.FIRST and type.LAST

Min and max between two variables:
type.min (a,b) and type.max(a,b)

Declaring a data

(optional) (optional except
for const)
Var eeeeeee C UINT] @ rerreseess T TT T T T TT SUURRRR. S i
static var ====F int16 @ -=sessesees . B_]_ [3] L] {_’1 1 O}'
CONSt -erennnns LR o I o4 S T A L @ R e R e S v (4'<< é)'
float32 : “1h [2] (1.0, 1 1’}
bool : aFlag E tr.ué° '
Hme ; = 125rT’15 + 1ps;
struct : aStruct A o ;
stack : aStack e

Scientific notations for f1oat32: 3.43e5, 3.43e+5, 3.43E+5, 3.43e-5 and 3.43E-5.

o ¥
O e
< Qf; £330
o\y:s‘

www.designcps.com @ @ 37

Declaration statements

v" Scope of declaration

— global variable

— local to a process

— local to the code of a state or local the code of transition
— local to the init () function

— Local to a named block
v But always at the beginning of the scope!

v The visibility of a variable extends throughout the scope (e.g. a
process-level variable is known in the code of all the states and
transitions of the process)

v In addition to normal variables, there are constants and static
variables — similar as in C (static var. only allowed at process-level)

v What holds for basic types, holds for structures, enums and collections

- 38

on constants

const bool: VRAI = true;

processdef MyProc()
{
const uint32: V1 = OxAlE;
const uint32: V2 = 2590;
state Main {
assert(Vl == V2);

}
h

const uint32: ARRAY_SIZE = 3;
var uint32: myArray[ARRAY_SIZE];

const time64: aPeriod = 10@ms;
process MyProc: aTask[aPeriod]();

Working with time

/* Internal granularity of time type is the picosecond (ps). */

const time64: delaye = 3ms;

init() time64 type to
/* Addition in different time units */ measure and
var timeé4: aDuration = 5s + 15@ms + 3ns + 1ps; . .
/* Arithmetic on time64 */ man|pU|ate time.
var time64: anotherDuration = 2 * aDuration - 1ps; . -

" 7% Maasuring Time af run-time *7 77777 . Granularity is

| var time64: timer® = time(); _ _______ J '
var timeé4: timeri; _ IDJ'C:C>E;€!<:CDIICi

| /* Suspend execution for a certain time */i Units: s, ms, ns,

| sleep(delaye); _ _ _ _______________ J
timerl = time(); us, PpPsS and Hz
assert(timerl - timere >= delay®);

/* All time units - time quantities are integral values */
assert(ls == 1@606ms);

assert(lms == 1006us);

assert(lus == 1@@6ens);

assert(lns == 1008ps);

/* Printing out time quantities */

println(“aDuration is %t, current time is %t", aDuration, time());

) 40

e Deivhere SRR

SEEN

- coding standards

CPAL faclilitates the writing of
correct code

Strongly typed language: conversions must be explicit

Designed with simplicity in mind: no convoluted constructs

No dynamic memory

No pointers

All processes are known before run-time - workload is bounded
Built-in code execution time monitoring support

Built-in loop over construct to prevent “off-by-one” errors when
iterating over collections

Testing the equality of floating-point numbers is forbidden
Ejep

Inspired from Misra C and CERT C

41

_

Collections and inter-process
communication

www.designcps.com

Overview on collections
FIFO vs LIFO buffering vs arrays

/* A FIFO queue DF maximum 19 unsigned integers */

Operations on .
. * A LIFO -F 18 d £ "
collections: W’ queue of maximum 10 unsigned integers */

yar stack<uint32>: |aStack0FU1nt32[1B],
[

v . /* A uni-dimensional array of uint8 */

pUSh (1tem) var uint8: data[20];
v’ pop ()

* ; i A *

v pxae&k () /* Collections can hold basic types and structures as well */
v is full(), init() {
v assert(aQueueOfUint32.isEmpty());

I?CYt__fill'l () assert(aQueue0fUint32.notFull());
4 J_s__erngft}7() ’ aQueue0fUint32.push(10);
v aQueueOfUint32.push(11);

not_empty () assert(aQueue0fUint32.notEmpty());
v count () assert(aQueue0fUint32.notFull());
v assert(1@ == aQueueOfUint32.pop());
voctear () aStackofUints2.push(10); | _

max size() laStackD-FUJ.nt32 push(11); :
,assert(ll == aStackOfUint32.peek());
1assert(1ll == aStackOfUint32.pop()); J

Communication channels

n)

processdef Uint32Producer(out channel<uint32>:

{
}

eue or a stack = [IOOHIS]lI—{'
processdef Uint32Reader(in channel{uint32 currentValue

{
state doSomething { /* ... */ }
} [aConsmnerl [100ms, 51115])

state doSomething { /* ...

aConsumelZ [100ms, 101115])

Can be eithe

var queue<uint32>: currentValue[18];
process Uint32Producer: aProducer[188ms](currentValue);

process Uint32Reader: aConsumerl[186ms, Sms](currentValue);
process Uint32Reader: aConsumer2[166ms, 16ms](currentValue);

Inter-process communication can be done

through normal global variables as well
(i.e., overwrite semantics)

- 44

lterating on collections (1/2)

enum FrameKind {
PUBLISH, SUBSCRIBE, ACK

}s
Constructs for struct Frame {
iterators: uint32: destination;
FrameKind: kind;
v it index }.“1"“2: data; Works whatever the
v/ it.current collections used for
v it.is last processdef Publisher(the communication
v remove current 1n uint32: sensor,
— in queue<uint32>: subscribers channel
(continue |
restart| . Goes through the
break) state Emitting { p I
continue var Frame: frame: entire collection,
b N frame.kind = PUBLISH; iterator 1t does not
rea frame.data = sensor; | need to be declared
' loop over subscribers with it { |
frame.destination = it.current;
port.push(frame);
o

45

Iterating on (unsized) arrays

Sweeping
LJSir]g; my_function(in uint32:junsized_arrayl]
max size f“‘?ﬁlﬁ e
— or i <|un51zed_array.max_51¢e,|1
attr|bute . t("%u ", unsized_array[1]);
pOSS|b|e fOI’ |1|:n:rF over Fﬂ_':iz_edjar*_r*a; with _it_-[I
cj T To.print("%u ", it.current); -
queues an }
stacks too)
init() {

var uint32: a[3] ={ @8, 1, 2 };

const uint32: b[4] ={ 3, 4, 5, 6 };
my_function(a);
my function(b);

Unsized arrays

allows generic
function

signatures

46

www.designcps.com

Pseudo-random numbers

seed (optional)

enum Cardinal Points

var stack<int8»: a_stack of_int[1@]; an enum. ChOice Ufli form ()

NSRS NENENANEN

processdef Simple()
{
state Main {

/* random generation of a time quantity */

I0.println("%t", time&d.rand uniform(@ms, 1868ms));

/¥ generation interwval can span over the negative numbers when type allows

IO0.println("%d", intl6.rand uniform(-64,64));

IO0.println("%f", float32.rand pareto(19.8,8.5));

IO.println("%f", float32.rand_exponential(l.8/58.8));

IO0.println("%f", float32.rand gauss(0.8, 1.8));

/* random selection over an enum */
I0.println{"%u", uint32.cast(Cardinal_Points.choice uniform()));
/* random selection over a collection */
.println{"%d", a_stack of int.choice uniform()});

%

P
/
!

rocess Simple:

{ type.rand uniform(a,b)

NORTH, .

SOUTH, type.rand gauss (mu, sigma)

peer type.rand exponential (lambda)
I

type.rand pareto(scale, shape)

a collection.choice uniform()

48

Varying process inter-arrival times

processdef Time_Varying Period()
{
state Main {
I0.println("period: %t",self.period);
I0.println("offset: %t",self.offset);
I0.println("current activation: %t",self.current_activation);
I0.println("previous_activation: %t",self.previous_activation);

}
¥

/* The first instance of the process is executed at time 3ms,
the subsequent instances with an interarrival time randomly
chosen in [8,13]ms */

The annotation is executed upon
B the activation of the process, before
o the body of the process

|
|

49

Varying execution times

processdet Varying_Execution_Time

b e . Can be derived by
1@cpal:time {0 , monitoring at run-
Statel.execution_time ; J p
time with —stats

on (true) to State2; interpreter option
state State2 {

@cpal:time

annotations @cpal:time {
respected in }
simulation }

mode but }

State?.execution_time
on (true) to Statel;

ignored in . o
. processdef Conditional Execution_Time()
real-time { e, Ak
. Execution times
mode state Main {

can dynamically
if (uintlé.rand uniform(©,2)==0) {

Main.execution_time = 1ms; Change over time
} else {

Main.execution_time

50

Distributed applications: e.g. UDP or CAN

Same code in simulation mode and
execution mode

struct udp_datagram {
uint&: address[4];
uintg: data[lee];

}i

A CPAL UDP stream is a queus of packets whose name indicate
ow it is being configured:
* - upd_ prefix tells CPAL that this queue binds to a udp port
* - then comes the port number (socket) and finally the direction in/out
The name of the gqueue must respect the following regex format wdp_([@-9]+)_

port to serwver ¥/

var queue<udp datagram»: udp 12345 out_client[2@]; !
'* comm. port from serwver */ '
var queue<udp datagram:: udp_ 12346 in_client[28]; J

processdef client{in channel<udp_datagram:: rcv,cut channel<udp datagram:: snd)
{
/* send request
state Request {
var udp_datagram : p;

/* server's IP address - broadcast would be 255.255.255.255 %/
p-address[@] = 192; p.address[1] = 168; p.address[2] = 1; p.address[3] = 28;

p.data[@] = uint8.as(self.pid);
_p.data[1] = alive_counter;
| snd.push(pl; |
alive counter = alive counter + 1;
walt for answer = true;

51

System-level simulation

processdef RawCamera(out channel<RawVideoFrame>: port)

{
state Main {
var uint32: remaining_bytes = image_size_bytes;
var RawVideoFrame: frame;
while (remaining bytes > 8) {
frame.origin = self.current_activation;
frame.size = uint32.min{remaining_bytes, MTU);
/¥ I0.println("%t %u", frame.origin, frame.size); */
sleep(time6d.rand uniform(comstack latency min, comstack latency max));
port.push(frame);
remaining_bytes = remaining_bytes - frame.size;
I0.sync();
}
}
3

var queue<RawVideoFrame>: pegase ECUl Switch#1 REQ1 output[2];

process RawCamera: caml[cam_period](pegase_ECU1l_Switch#1_REQ1l_output);

- . RTaW-Pegase _
[«] T & [simulator’"jf. =

| Eeu_23 L IL._!-']
| L \ f A
2 - s

The simulation model can later
be executed with no
changes on a testbed or a

prototype of the system.

Beu_L2 i \ Bem_1d

Further information

v The CPAL programming language: an introduction, 2015.

Resources such as technical papers to learn CPAL at

https://www.designcps.com/resources-to-learn-cpal/

Code examples that can be run in the CPAL-Playground at
https://www.designcps.com/cpal-code-examples-index/

Download binaries from https://www.designcps.com/binaries/

designCPS

email: contact@designcps.com

@ https://twitter.com/DesignCPS
) http://www.designcps.com

53

https://www.designcps.com/wp-content/uploads/cpal-intro.pdf
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/

Thank You !

www.designcps.com

