
The CPAL programming language
Design, Simulate, Execute

Embedded Systems

Author: Nicolas.Navet@designcps.com

Version: 1.16 – October 21, 2016

A tour of CPAL

Hello, World

www.designcps.com 2

Hello, World

www.designcps.com 3

Aim: be
concise,

intuitive and
productive

Finite State Machine
embedded

in the process

Preamble: a language can be textual,

graphical or a mix of both

www.designcps.com

Examples from the Scade
quick reference card

What do you
think

is the most
efficient?

CPAL = textual programming with visual representation of
facets out of the code: logic of the automata, data-flow between

processes, task activation

4

Structure of a program

www.designcps.com 5

CPAL Naming Convention

www.designcps.com 6

Names of
enumerations values,
and constant shall be
UPPER_CASE_WITH

_UNDERSCORE

Names of variables,
arguments, functions,

and tasks shall be
lower_case_with

_underscores

Use cpal_lint and
cpal2x to resp.

check and format
code according to

this naming
convention

Names of user-defined
process, structures,
states, and enum. shall be
Mixed_Case_With_Under
scores

Why a programming language dedicated to

Embedded Systems ?

www.designcps.com

o General purpose programming languages do not offer the right
abstractions for:

o Periodic activities and real-time scheduling

o Time measurements and manipulation

o Finite state machines

o High-level interfaces to I/Os

o etc

o Design for facilitating the writing of correct embedded code (incl.
restrictions)

o “Write once, Run Anywhere” of Java does not guarantee anything
about timing behaviour on different platforms

7

Both functional and non-
functional concerns

www.designcps.com

Processes: recurring activities whose

logic is described as Finite State Machine

8

Finite-state Machines to

describe the logic of processes

www.designcps.com

Boolean condition

Timed transition: after a
certain time in a state,
go to another state

Timed transition
and condition

FSM =
states + transitions

Value that triggers a timed
transition can change

dynamically at run-time

9

Why using Finite State Machines ?

www.designcps.com

o Excellent way to describe the logic of programs that control
“reactive” systems (=systems that react on external events)

o Non-ambiguous visual representation - one state at a time,
transitions well defined

o Easy to execute, easy to simulate, properties can be verified by
model-checking or simulation

o However, there is a variety of FSMs that may differ on when to
trigger a transition, when leaving/entering a state, etc

10

Question: draw the FSM that describes the functioning of
a turnstile which allows someone to go through only
after a coin has been inserted, discuss design choices

[w
ik

ip
ed

ia
]

[wikipedia]

FSM in CPAL process

www.designcps.com

Code in a
transition

Code in a state

First state is
default state

Good practice: global
variables used in a

process must be passed
as arguments of the

process

11

A process is periodically activated

www.designcps.com

Execute
a transition first (when

possible) then the
current state

 best responsiveness
to external events

Execute transition code
Move to next state

A transition
can be fired ?

Wait until period has elapsed

NoYes

Stay in current state

Execute state-specific code

One “step” of execution
of the FSM

Execute common code

Activation condition
met or none ?

No Yes

12

Execution order

www.designcps.com

Try it out to check execution order at http://www.designcps.com/cpal-
playground?path=talks/tutorial/samples/tut-execution-order.cpal

13

http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal
http://www.designcps.com/cpal-playground?path=talks/tutorial/samples/tut-execution-order.cpal

Process instantiations

www.designcps.com

Activation conditions serve to implement functioning
modes and execute activities only if specific

conditions are met (e.g., event such as an alarm).

Periodic with an
offsets: first
instance is

released at time
`offset`

Periodic instance
with activation

condition

Periodic process

14

Process instantiations cont’d

www.designcps.com

offset period

15

Hands-on exercise #1

www.designcps.com 16

A] Write a process controlling the turnstile

B] Write a process with period 50ms that:

stay in state1 during 200ms (where a variable i is incremented),
then goes to state2 after having set i to 0 in transition. In state 2,
i is incremented and the FSM goes to state3 when i equals 4.
in State3, i is decremented and the FSM goes back to state1
when it has stayed at least 200ms in state3 and i is less than or equal
to 0.

C] Verify that the process runs as expected by executing the model and
examining the changes of states and transitions triggered

Solution to exercise #1-B)

www.designcps.com 17

Process introspection

www.designcps.com

First time when the
current and previous
instances obtained

the CPU

Introspection is helpful to validate timing
behaviour and implement adaptive
behaviours, such as algorithms that

depend on the rate of execution or the
jitter of the process

18

www.designcps.com

Simulation and Real-Time

Execution Mode

19

Designer’s objective: model

behaves as the real-system

www.designcps.com

A solution for timing is to inject
delays in the model so as to

reproduce the time it takes to
execute the code on a specific

platform

20

Buzzwords:
“digital mockups”,

“digital twins”

CPAL’s 2 Execution Modes

www.designcps.com

 Execution is as fast as possible
(e.g. periods are not respected)

 Code executed in zero time –
except if stated otherwise with
timing annotations

 CPAL interpreter is hosted by
an OS

 No access to real I/Os

Simulation mode Real-Time mode

 Real-time execution
 Code (instructions, read/write

I/Os) takes time to execute –
depends on the platform

 CPAL can be executed on bare
hardware or hosted by an OS

DeploymentDevelopment

21

Overhead data on Freescale FRDM-K64F:
 max. activation jitter: 40us
 timer interrupt: 0.6us
 context switch overhead: 2us

Logical time vs physical time

www.designcps.com

0 100

Let’s consider this process

22

200 300

Start of execution End of execution

Real-time
execution mode

0 100 200 300

Simulation
mode

 In real-time mode, only physical time
 In simulation mode:

o order of events is ensured by a
logical time

o Execution is as fast as possible (not
in real-time) and code is executed in
zero logical time

Question: where do the delays between start and end come from ?

Real-time scheduling

www.designcps.com 23

Scheduling policies: FIFO (by default), Fixed Priority non-preemptive
(FPNP), Earliest Deadline First non-preemptive (EDFNP)

Simulating execution times

www.designcps.com 24

Timing annotations can be derived by built-in monitoring
facilities and are respected by the simulator

Execution time in transitions too

www.designcps.com 25

Execution time of
the named blocks

Execution time of
complete state

www.designcps.com

The CPAL development environment

26

Complete development environment
from http://designcps.com

www.designcps.com 27

Functional view

Finite State Machine describing the logic
of a process

Code

Activation of the tasks over time

http://designcps.com/

Zero install with the CPAL- Playground
http://designcps.com/cpal-playground

www.designcps.com 28

+ no install, run
from everywhere

+ nice to experiment
with the example
programs
available on-line

– no way to change
variable values at
run-time or run
scenarios

– no graphical
representation of
FSMs and
functional
architecture

– No real-time mode

– Not embedded
programming !

http://designcps.com/cpal-playground
http://designcps.com/cpal-playground
http://designcps.com/cpal-playground
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/

CPAL-Editor on all platforms with Java Web

Start - https://www.designcps.com/binaries/

www.designcps.com 29

+ the graphical
editor on all
platforms with
Java (Raspberry,
MacOS, etc)

- Have to add
security
exception to Java

- Have to manually
install Graphwiz
and command-
line tools

GUI can be downloaded
from designcps.com

https://www.designcps.com/binaries/

Command-line tools overview

www.designcps.com

Parse

Execute2

1
$ cpal_parser input.cpal output.ast

 .ast file created on success, parse errors listed otherwise

Interactive mode within the interpreter

Non-interactive mode, e.g. on embedded Linux or Raspberry

$ cpal_interpreter –i –q input.ast

-i : interactive mode toggled on, -q : quiet mode (less
verbose)

30

Available CPAL ports

www.designcps.com

PLATFORMS EXECUTION
MODE

HOSTED
BY AN OS ?

ACCESS TO
HARDWARE ?

EXECUTABLE

Windows 32/64bit Simulation Yes No cpal_interpreter

Windows 32/64bit Real-time Yes No cpal_interpreter_
winmbed

Linux 64 bit Simulation Yes No cpal_interpreter

Linux 64 bit Real-Time Yes Yes cpal_interpreter_
linuxmbed

Mac OS X Simulation Yes No cpal_interpreter

Freescale FRDM-
K64F

Real-Time No Yes NA, an image
is uploaded

Raspberry Pi
(Raspbian)

Real-Time and
Simulation

Yes Yes cpal_interpreter_
raspberry

31

Best real-time performance

Ex. of interpreter command lines

www.designcps.com 32

 cpal_interpreter my_program.ast: execute indefinitely in simulation mode
and non-interactive mode

 cpal_interpreter –i –q my_program.ast: execute in simulation mode and
interactive mode and quiet mode

 cpal_interpreter -p NPFP my_program.ast: execute with processes
scheduled under the non-preemptive Fixed Priority policy instead of FIFO, and non-
interactive mode

 cpal_interpreter_linuxmbded -q my_program.ast: execute in Linux,
indefinitely in real-time mode, non-interactive mode and quiet mode

 cpal_interpreter_winmbded -r -i -s scenario.sce

my_program.ast : execute on Windows in real-time mode the scenario defined in
file scenario.sce then remain in the interpreter in interactive mode

 cpal_interpreter --silent --time 5000 my_program.ast: execution
in simulation and non-interactive mode during 5000ms, with no outputs to the console

 cpal_interpreter_raspberry -r -v --stats --time 5000

my_program.ast: execute on Raspberry in real-time, non-verbose and non-
interactive mode during 5000ms with the monitoring of the Worst-Case Execution
Times (WCET) of the processes

www.designcps.com

Data types in CPAL

33

Overview on types
 No untyped data and no pointer in CPAL

 No memory is dynamically allocated / freed at run-time

 Basic types: bool, uint8, int64, float32, time64, etc

 User-defined types: array, enum and structure

 Collections: stacks and queues

 Process is a built-in type for an activity of the system (similar to
threads or tasks in other contexts)

www.designcps.com 34

CPAL is a strongly typed language – conversions between types
have to be explicit: uint8.as(x), uint16.as(x),

uint32.as(x), uint64.as(x), int8.as(x), int16.as(x),

int32.as(x), int64.as(x), time64.as(x), bool.as(x).
Binary reinterpretation through type.cast(x)

Overview on types cont’d
 Variables of basic types and user-defined types are all initialized to

zero at creation (i.e., all bits are set to zero)

 Arrays are uni-dimensional

 No char or string type but writing to terminal is possible with
IO.print() and IO.println() functions

 Integers can be specified in decimal or hexadecimal (0xA1E = 2590)

www.designcps.com 35

Example of
Complex types

Primitive data types

www.designcps.com 36

Min and max value of each type:
type.FIRST and type.LAST

Min and max between two variables:
type.min(a,b) and type.max(a,b)

Declaring a data

www.designcps.com 37

var
static var
const
…

 Qualifier Type + ‘:’ Initialization + ‘;’
(optional except

for const)
uint8 :
int16 :
int64 :
float32 :
bool :
time64 :
struct :
stack :
…

= 5;
= {-1, 12,0};
= (4 << 2);
= {1.0, 1.1}
= true;
= 125ms + 1ps;
= {true, 1, 0};

 Name

x
B_1
C#4
_1h
aFlag
t
aStruct
aStack
…

 Array

(optional)

[3]

[2]

Scientific notations for float32: 3.43e5, 3.43e+5, 3.43E+5, 3.43e-5 and 3.43E-5.

Declaration statements
 Scope of declaration

– global variable

– local to a process

– local to the code of a state or local the code of transition

– local to the init()function

– Local to a named block

 But always at the beginning of the scope!

 The visibility of a variable extends throughout the scope (e.g. a
process-level variable is known in the code of all the states and
transitions of the process)

 In addition to normal variables, there are constants and static
variables – similar as in C (static var. only allowed at process-level)

 What holds for basic types, holds for structures, enums and collections

www.designcps.com 38

A focus on constants

www.designcps.com 39

Working with time

www.designcps.com

time64 type to
measure and

manipulate time.
Granularity is
picosecond

Units: s, ms, ns,

us, ps and Hz

40

CPAL facilitates the writing of

correct code

 Strongly typed language: conversions must be explicit

 Designed with simplicity in mind: no convoluted constructs

 No dynamic memory

 No pointers

 All processes are known before run-time - workload is bounded

 Built-in code execution time monitoring support

 Built-in loop over construct to prevent “off-by-one” errors when
iterating over collections

 Testing the equality of floating-point numbers is forbidden

 Etc…

www.designcps.com 41

Inspired from Misra C and CERT C
coding standards

www.designcps.com

Collections and inter-process

communication

42

Overview on collections
FIFO vs LIFO buffering vs arrays

www.designcps.com 43

Operations on
collections:

 push(item)

 pop()

 peek()

 is_full(),

 not_full()

 is_empty(),

 not_empty()

 count()

 clear()

 max_size()

Communication channels

www.designcps.com 44

Inter-process communication can be done
through normal global variables as well

(i.e., overwrite semantics)

Can be either a queue or a stack

Iterating on collections (1/2)

www.designcps.com 45

Goes through the
entire collection,

iterator it does not
need to be declared

Works whatever the
collections used for
the communication

channel

Constructs for
iterators:

 it.index

 it.current

 it.is_last

 remove_current

(continue|

restart|

break)

 continue

 break

Iterating on (unsized) arrays

www.designcps.com 46

Sweeping
using

max_size

attribute
possible for
queues and
stacks too

Unsized arrays
allows generic

function
signatures

www.designcps.com

CPAL for simulation

47

Pseudo-random numbers

www.designcps.com 48

 seed(optional)

 type.rand_uniform(a,b)

 type.rand_gauss(mu,sigma)

 type.rand_exponential(lambda)

 type.rand_pareto(scale,shape)

 an_enum.choice_uniform()

 a_collection.choice_uniform()

Varying process inter-arrival times

www.designcps.com 49

The annotation is executed upon
the activation of the process, before

the body of the process

Varying execution times

www.designcps.com 50

Execution times
can dynamically

change over time

Can be derived by
monitoring at run-

time with –stats
interpreter option

@cpal:time

annotations
respected in
simulation
mode but
ignored in
real-time
mode

Distributed applications: e.g. UDP or CAN

www.designcps.com 51

Same code in simulation mode and
execution mode

System-level simulation

www.designcps.com 52

The simulation model can later
be executed with no
changes on a testbed or a
prototype of the system.

CPAL to describe
the behavior of a

station, an
application or a
protocol layer

e.g. RTaW-Pegase
simulator

www.designcps.com

Further information

53

designCPS

email: contact@designcps.com

https://twitter.com/DesignCPS

http://www.designcps.com

 The CPAL programming language: an introduction, 2015.

 Resources such as technical papers to learn CPAL at
https://www.designcps.com/resources-to-learn-cpal/

 Code examples that can be run in the CPAL-Playground at
https://www.designcps.com/cpal-code-examples-index/

 Download binaries from https://www.designcps.com/binaries/

https://www.designcps.com/wp-content/uploads/cpal-intro.pdf
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/resources-to-learn-cpal/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/cpal-code-examples-index/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/
https://www.designcps.com/binaries/

www.designcps.com

Thank You !

54

