
Model-based design for embedded systems
with CPAL

Tingting Hu, Nicolas Navet

University of Luxembourg – FSTC, Esch-sur-Alzette, Luxembourg

October 4th, 2017, Turin, Italy



Table of Content

1 Model-based design

2 Domain specific language

3 Cyber physical action language

4 Introduction to the demo

Tingting Hu Model-based design for embedded system with CPAL 2 / 17



Model-based design

Design
with

Simulation

Executable
Specifications

Continuous
Test and

Verification

Automatic
Code Generation

Models

Design
with

Simulation

Executable
Specifications

Continuous
Test and

Verification

Automatic
Code Generation

Models
Test with Design
- Detects errors earlier

Simulation
- Reduces “real” prototypes
- Iterative “what-if” analysis

Executable models
- Unambiguous
-“One Truth”

Automatic code generation
- Minimizes coding errors Source: Analog Device

Tingting Hu Model-based design for embedded system with CPAL 3 / 17



Domain specific language

Model-based design, when coupled with domain-specific
language, permits to achieve higher software productivity and
obtain trustworthy system.

• General purpose languages suppose to be used across
domains

• A DSL captures semantics specific to a particular domain
• Less comprehensive than GPL, but more expressive in

domain knowledge
• Reduce program complexity

Tingting Hu Model-based design for embedded system with CPAL 4 / 17



Why a new DSL: CPAL

General-purpose programming languages do not offer all the
right abstractions for today’s real-time embedded systems

• scheduling periodic activites
• time as first class citizen
• safe inter-process communication
• native support for finite-state machines
• high-level interfaces to I/Os
• support for timing and formal verification

Tingting Hu Model-based design for embedded system with CPAL 5 / 17



Why a new DSL: CPAL

Synchronous languages, such as Esterel, Lustre, Signal, for
reactive systems

• Impose constraints and specific programming style
⇒ initial learning curve steep

• Some are actually Architecture Description Language
(ADL), e.g. Prelude, Giotto
⇒ a different language should be used for development

• Offers formal proof support in both the time domain and
value domain
⇒ Suitable for critical applications

Tingting Hu Model-based design for embedded system with CPAL 5 / 17



Cyber physical action language

• C-like
• Interpreted language, offers better code portability
• native support for Finite State Machine (mealy-FSM)
• built-in notation of time:

• period, offset, activation time, execution time, execution
jitter, deadline, etc

• scheduling policies:
• FIFO, Fixed Priority Non-preemptive (FPNP), Early

Deadline First Non-preemptive (EDFNP)

• Easy access to I/Os in the model through high-level
hardware abstraction

• Code-generation is currently under investigation

Tingting Hu Model-based design for embedded system with CPAL 6 / 17



A few exemplar use cases
• Development of the SOME/IP SD automotive protocol on top of

Ethernet used in a study with Daimler Cars

• a smart parachute for UAVs

• IoT application in the design of a smart mobility system for two
and three-wheelers implemented on an ARM mbed IoT board,
with IBM Watson IoT platform as cloud backend

• CPAL is used by ONERA to simulate and prototype a
code-upload protocol for the avionics domain.

• CPAL is used to simulate TTEthernet and study by fault-injection
its robustness to transient failures

• etc . . .

Tingting Hu Model-based design for embedded system with CPAL 7 / 17



CPAL sample

processdef P(params) {
common {

code
}

state Warning {
code

}
on (cond) {code} to Alarm_Mode;
after (time) if (cond) to Normal_Mode;

finally {
code

}
}

process P: inst[period,offset][cond](args);

@cpal:time:inst{
annotation code

}

Tingting Hu Model-based design for embedded system with CPAL 8 / 17



The annotation mechanism
Timing annotation can be specified at different granularity

• Globally:
• @cpal:time
• scheduling policy and parameters (priorities, deadlines)
• executed once at the simulation startup

• Instance-specific
• @cpal:time:inst
• timing properties regarding a particular process instance
• executed every time an instance is activated

• Named-block
• @cpal:time {block_name.execution_time=}
• timing properties regarding any named-block, e.g a state
• executed every time the referred named-block is executed

Tingting Hu Model-based design for embedded system with CPAL 9 / 17



Two execution modes

Simulation mode
• Execution is as fast as

possible (e.g. periods are
not respected)

• Code executed in zero time
- except if stated otherwise
with timing annotations

• CPAL interpreter is hosted
by an OS

• No access to real I/Os

Tingting Hu Model-based design for embedded system with CPAL 10 / 17



Two execution modes

Simulation mode
• Execution is as fast as

possible (e.g. periods are
not respected)

• Code executed in zero time
- except if stated otherwise
with timing annotations

• CPAL interpreter is hosted
by an OS

• No access to real I/Os

Suitable for development

Tingting Hu Model-based design for embedded system with CPAL 10 / 17



Two execution modes

Simulation mode
• Execution is as fast as

possible (e.g. periods are
not respected)

• Code executed in zero time
- except if stated otherwise
with timing annotations

• CPAL interpreter is hosted
by an OS

• No access to real I/Os

Suitable for development

Real-time mode
• Real-time execution
• Code (instructions,

read/write I/Os) takes time
to execute - depends on
the platform

• CPAL can be executed on
bare hardware or hosted
by an OS

Tingting Hu Model-based design for embedded system with CPAL 10 / 17



Two execution modes

Simulation mode
• Execution is as fast as

possible (e.g. periods are
not respected)

• Code executed in zero time
- except if stated otherwise
with timing annotations

• CPAL interpreter is hosted
by an OS

• No access to real I/Os

Suitable for development

Real-time mode
• Real-time execution
• Code (instructions,

read/write I/Os) takes time
to execute - depends on
the platform

• CPAL can be executed on
bare hardware or hosted
by an OS

Suitable for deployment

Tingting Hu Model-based design for embedded system with CPAL 10 / 17



Two execution modes

Execution order of processes remains the same in simulation
and in real-time mode under FIFO scheduling policy

Tingting Hu Model-based design for embedded system with CPAL 11 / 17



The interpreter

• Signle interpreter:
• Ready for use in both simulation mode and real-time mode
• Timing annotation will be ignored in real-time mode, except

scheduling policies and parameters
• –stats option: monitoring the WCET of processes at

run-time

• Multi-interpreter:
• multiprocessors, multicores, or distributed environment
• One interpreter for each resource
• Currently just supported in the simulation mode

Tingting Hu Model-based design for embedded system with CPAL 12 / 17



Supported platforms

Tingting Hu Model-based design for embedded system with CPAL 13 / 17



Use case
CPAL for the development and execution of real-time applications

Control the LED color according to the orientation of the
FRDM-K64F board, leveraging the on-board accelerometer.

Tingting Hu Model-based design for embedded system with CPAL 14 / 17



Use case
CPAL as a modeling and timing-accurate simulation environment

A distributed system based on the Controller Area Network
(CAN) consists of 15 nodes, each subject to typical automotive
traffic.

HW

SW

HW

SW

can_out_1
HW

SW

can_out_0

…

can_out_14

CAN BUS

ECU0 ECU1 ECU14

Each node is associated with an output buffer: FIFO queue or
priority queue. Given the traffic, which assures better real-time
performance, e.g. schedulability?

Tingting Hu Model-based design for embedded system with CPAL 15 / 17



Main components of CAN model

The multi-interpreter is handy for the modeling of distributed
system

• CAN controller, in particular the transmission side
• Individual nodes: the CAN controller + the application

tasks
– ecu0.cpal, ecu1.cpal, ..., ecu14.cpal

• The CAN network
– can-network-fifo.cpal, can-network.cpal

• System & dataflow configuration for the multi-interpreter

Tingting Hu Model-based design for embedded system with CPAL 16 / 17



Multi-interprerter simulation

ecu0

can_out_0

can_interface[0]

interpreter0

ecu1

can_out_1

can_interface[1]

interpreter1

ecu14

can_out_14

can_interface[14]

interpreter14

can_network

interpreter15

…

Multi-interpreter 
environment

Tingting Hu Model-based design for embedded system with CPAL 17 / 17


	Model-based design
	Domain specific language
	Cyber physical action language
	Introduction to the demo

