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- Detects errors earlier

Simulation
- Reduces “real” prototypes
- Iterative “what-if” analysis

Executable models
- Unambiguous
-“One Truth”

Automatic code generation
- Minimizes coding errors Source: Analog Device
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Domain specific language

Model-based design, when coupled with domain-specific
language, permits to achieve higher software productivity and
obtain trustworthy system.

• General purpose languages suppose to be used across
domains

• A DSL captures semantics specific to a particular domain
• Less comprehensive than GPL, but more expressive in

domain knowledge
• Reduce program complexity
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Why a new DSL: CPAL

General-purpose programming languages do not offer all the
right abstractions for today’s real-time embedded systems

• scheduling periodic activites
• time as first class citizen
• safe inter-process communication
• native support for finite-state machines
• high-level interfaces to I/Os
• support for timing and formal verification
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Why a new DSL: CPAL

Synchronous languages, such as Esterel, Lustre, Signal, for
reactive systems

• Impose constraints and specific programming style
⇒ initial learning curve steep

• Some are actually Architecture Description Language
(ADL), e.g. Prelude, Giotto
⇒ a different language should be used for development

• Offers formal proof support in both the time domain and
value domain
⇒ Suitable for critical applications
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Cyber physical action language

• C-like
• Interpreted language, offers better code portability
• native support for Finite State Machine (mealy-FSM)
• built-in notation of time:

• period, offset, activation time, execution time, execution
jitter, deadline, etc

• scheduling policies:
• FIFO, Fixed Priority Non-preemptive (FPNP), Early

Deadline First Non-preemptive (EDFNP)

• Easy access to I/Os in the model through high-level
hardware abstraction

• Code-generation is currently under investigation
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A few exemplar use cases
• Development of the SOME/IP SD automotive protocol on top of

Ethernet used in a study with Daimler Cars

• a smart parachute for UAVs

• IoT application in the design of a smart mobility system for two
and three-wheelers implemented on an ARM mbed IoT board,
with IBM Watson IoT platform as cloud backend

• CPAL is used by ONERA to simulate and prototype a
code-upload protocol for the avionics domain.

• CPAL is used to simulate TTEthernet and study by fault-injection
its robustness to transient failures

• etc . . .
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CPAL sample

processdef P(params) {
common {

code
}

state Warning {
code

}
on (cond) {code} to Alarm_Mode;
after (time) if (cond) to Normal_Mode;

finally {
code

}
}

process P: inst[period,offset][cond](args);

@cpal:time:inst{
annotation code

}
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The annotation mechanism
Timing annotation can be specified at different granularity

• Globally:
• @cpal:time
• scheduling policy and parameters (priorities, deadlines)
• executed once at the simulation startup

• Instance-specific
• @cpal:time:inst
• timing properties regarding a particular process instance
• executed every time an instance is activated

• Named-block
• @cpal:time {block_name.execution_time=}
• timing properties regarding any named-block, e.g a state
• executed every time the referred named-block is executed
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Two execution modes

Simulation mode
• Execution is as fast as

possible (e.g. periods are
not respected)

• Code executed in zero time
- except if stated otherwise
with timing annotations

• CPAL interpreter is hosted
by an OS

• No access to real I/Os
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Two execution modes

Execution order of processes remains the same in simulation
and in real-time mode under FIFO scheduling policy
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The interpreter

• Signle interpreter:
• Ready for use in both simulation mode and real-time mode
• Timing annotation will be ignored in real-time mode, except

scheduling policies and parameters
• –stats option: monitoring the WCET of processes at

run-time

• Multi-interpreter:
• multiprocessors, multicores, or distributed environment
• One interpreter for each resource
• Currently just supported in the simulation mode
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Supported platforms
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Use case
CPAL for the development and execution of real-time applications

Control the LED color according to the orientation of the
FRDM-K64F board, leveraging the on-board accelerometer.
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Use case
CPAL as a modeling and timing-accurate simulation environment

A distributed system based on the Controller Area Network
(CAN) consists of 15 nodes, each subject to typical automotive
traffic.

HW

SW

HW

SW

can_out_1
HW

SW

can_out_0

…

can_out_14

CAN BUS

ECU0 ECU1 ECU14

Each node is associated with an output buffer: FIFO queue or
priority queue. Given the traffic, which assures better real-time
performance, e.g. schedulability?
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Main components of CAN model

The multi-interpreter is handy for the modeling of distributed
system

• CAN controller, in particular the transmission side
• Individual nodes: the CAN controller + the application

tasks
– ecu0.cpal, ecu1.cpal, ..., ecu14.cpal

• The CAN network
– can-network-fifo.cpal, can-network.cpal

• System & dataflow configuration for the multi-interpreter
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Multi-interprerter simulation
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Multi-interpreter 
environment
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