
The CPAL programming language
Design, Simulate, Execute

Embedded Systems

Nicolas Navet and Sebastian Altmeyer, University of Luxembourg

Loïc Fejoz and Lionel Havet, RealTime-at-Work

Embedded Real-Time Software and Systems (ERTS 2016)

Toulouse, France, January 28, 2016

Lean Model-Driven Development through

Model-Interpretation

www.designcps.com 2

Amount of software is growing
exponentially – what about

productivity gains in software
development ?

Software has become the key to innovation

Software is disrupting complete
industries

Every company has to learn to
become a software company

Model-Driven Development is certainly
a powerful enabler but ..

Programming environments still lack

 the high-level concepts: embedded
system specific language abstractions

 automation features ("state the what,
not the how") that would make them
more productive

Innovation increasingly relies on
software

[inspired from posts at http://www.theenterprisearchitect.eu/]

CPAL is an embedded systems specific language

www.designcps.com 3

Model and program

functional and non-functional concerns

Simulate

possibly embedded within external tools such as RTaW-Pegase™ and
Matlab/Simulink ™

Execute

bare metal or hosted by an OS - prototypes or real systems

A

C

B

A joint project of RealTime-at-Work and
University of Luxembourg since 2012

www.designcps.com 4

5-steps of MBD
Matlab/Simulink

Scade CPAL

Figure from [2] and [3]
Inspired from interpreter-based interlocking systems

e.g.: RATP, SNCF [5], Westingshouse

Why a new programming language ?

www.designcps.com

o General purpose languages do not offer the right abstractions for ES:

o Periodic activities and real-time scheduling

o Time measurements and manipulation

o Finite state machines

o High-level interfaces to I/Os

o etc

o Conceived to facilitate the writing of correct embedded code (incl.
restrictions)

o “Write once, Run Anywhere” of Java does not guarantee anything about
timing behaviour on different platforms

o Development environments are unnecessary complex and often expensive

o Model interpretation brings benefits: monitoring at run-time, security, no
distortion between model and code, WORA, etc.

5

Both functional and
non-functional concerns

Our view: major productivity and quality improvements still ahead
of us through better programming languages and environments

A glance at the state-of-the-art

www.designcps.com 6

o With respect to synchronous languages ?

o Less demanding programming model: syntax close to mainstream languages,
multiple I/Os per execution

o No time-determinism but rather timing-predictability

o Not amenable yet to verification in the value domain

o Unlike pure Architecture Description languages like Giotto and
Prelude, CPAL is also a programming language and an execution
platform

o Same time-triggered execution model as Giotto

o Would benefit from rich data-flow language of Prelude

o A large number of related (many discontinued) languages since the
mid-80s: Pearl, Real-Time Euclid, C-extensions (real-time
concurrent C, PRET-C, mbeddr), Labview RT module, RT and safety-
critical Java, SCCharts, Papyrus-RT, etc most are imperative (and
not declarative like CPAL) in the non-functional domain

Outline

www.designcps.com 7

Selected highlights of the language

CPAL scheduling and task activation model

Processes are recurrent Finite State Machines

Timing-augmented design flow

Use-cases: automotive Ethernet simulation, Thales FMTV challenge,
UAV programming

A

D

B

C

E

www.designcps.com

A few highlights of the language

8

Hello, world

www.designcps.com 9

Hello, world

www.designcps.com 10

Aim: intuitive and
productive

FSM embedded
in the process

www.designcps.com

Processes: recurring activities whose

logic is described as Finite State Machine

11

Finite-state Machines to

describe the logic of a process

www.designcps.com

Boolean condition

Timed transition

Timed transition
and condition

Code both in states
and transitions

12

A process is periodically activated

www.designcps.com

Execute first a
transition (if
possible) then
current state

 best responsiveness
to external events

Execute transition code
Move to next state

A transition
can be fired ?

Wait until period has elapsed

NoYes

Stay in current state

Execute state-specific code

One “step” of execution
of the FSM

Execute common code

Activation condition
met or none ?

No Yes

13

Process introspection

www.designcps.com

First time when the
current and previous
instances obtained

the CPU

Introspection can serve to implement
adaptive behaviours and detect

abnormal events at run-time

14

www.designcps.com

CPAL scheduling

and task activation model

15

CPAL’s 2 Execution Modes

www.designcps.com

 Execution is as fast as possible
(e.g. periods are not respected)

 Code executed in zero time –
except if stated otherwise with
timing annotations

 CPAL interpreter is hosted by
an OS

 No access to real I/Os

Simulation mode Real-Time mode

 Real-time execution
 Code (instructions, read/write

I/Os) takes time to execute –
depends on the platform

 CPAL can be executed on bare
hardware or hosted by an OS

DeploymentDevelopment

16

Overhead data on Freescale FRDM-K64F:
 max. activation jitter: 40us
 timer interrupt: 0.6us
 context switch overhead: 2us

Vision behind CPAL

www.designcps.com

Timing equivalence needed depends on the application, can be e.g.
1) full determinism 2) order-preserving for observable events, or

3) deadline constraints met

17

In CPAL current release,
execution order of

processes remains the
same in simulation and

in real-time mode

Simulating execution times

www.designcps.com 18

Timing annotations can be derived by built-in monitoring
facilities and are respected by the simulator

Process activation model

www.designcps.com

offset period

Activation conditions (aka “guarded executions”)
are for implementing functioning modes and

executing event-triggered activities

19

CPAL scheduling model

www.designcps.com 20

o The choice of non-preemptive scheduling:
– No context-switch + no cache related preemption delays (CRPD)

on the WCET + less memory usage

– No shared resources, easier to validate, less timing variability

– But .. reduced ability to meet tight deadline constraints

o Currently FIFO policy is available :
– Enforce event-order determinism

– Work-conserving unlike static cyclic scheduling

o Built-in support for WCET measurements at run-time

o Planed to support partitioned multi-processor
scheduling

Declaring timing correctness:
designer states the “what”, not the “how”,

environment does the rest

www.designcps.com 21

Requirements: deadline,
frequency, jitters, data-flow

(precedence, prod. rate),
safety, etc

Allocate the models to the processing units

“Scheduler synthesis”

A

B

Ideas discussed in [6],
implementation ongoing

www.designcps.com

Use-Cases

22

Simulation: Some/IP SD [8,9]

www.designcps.com 23

SOME/IP SD: service discovery for automotive Ethernet
Objective: find the right tradeoff between subscription

latency and SOME/IP SD overhead

Max analysis
4.005ms

Max simulation
3.98ms

Subscription
latency

for a client

 Simulation complementary to analysis
 Models have been coupled with low-level simulator
 Same models could be used to implement testbeds

UC#1

Developing CPS:

a smart parachute for UAV [10]

www.designcps.com 24

UAVs autopilots cannot be trusted –
minimal safety through a remote termination component

Partnership with Alérion company

Termination upon
loss of connection or

pilot’s decision

UC#2

Software architecture

www.designcps.com 25

On-board module

HW control

Communication

UI

Executable requirements

www.designcps.com 26

 Actual max. latency depends on the ground speed target, the
minimum acceptable altitude, the weight of the UAS and the
characteristics of the parachute (opening time, lift, etc)

Model-based fault-injection

www.designcps.com 27

Time for the parachute to deploy (in seconds) and satisfaction of
requirement R4 versus network quality ratio [11]

Towards a timing augmented

design flow

www.designcps.com 28

vehicle display

CPAL
controller

Driving
scenarios

 Timing accurate simulation & delays injected in the simulation
 Execution on target is timing-equivalent to simulation

Ongoing research

UC#3

Thales FMTV challenge [12,13]

www.designcps.com 29

Aerial video system to detect and track a moving
object, e.g. a vehicle on a roadway

Challenge timing analysis community

[From 12]

[From 12]

UC#4

FMTV challenge in CPAL [13]

www.designcps.com 30

Functional
architecture

for challenge 1

4 sub-challenges

o Low effort to model vs automata-based formalisms

o Model and graphical representation helped to highlight
ambiguities

o Simulation helped to find errors in the analysis

o Simulation biased towards worst-case helped -> open
problem

o None of the schedulability questions could be automated,
e.g. “the minimum time distance between two frames
produced by the camera that will not reach the display, for
a buffer size n = 3”

“Pen and paper”

Conclusion & ongoing work

www.designcps.com 31

o CPAL: an interpreted language on a time-triggered execution engine -

imperative programming in the functional domain - declarative programming

in the non-functional domain

o Positive feedback about CPAL through industrial use-cases and teaching

o Code generation feasible for higher performance - hook to native code too

o Objectives: timing equivalence between models in simulation and execution

/ SILx for the execution engine

Envisioned use-cases for the execution engine:

 UAV and robotics

 Real-time IoT

 Adaptive and resilient CPS

CPAL is free to use for academics (research works and industrial projects),
Extensions to the language and toolset are welcome

www.designcps.com 32

Thank you for your attention!

Want to give it a try? Binaries,
code examples and playground

at https://designcps.com

https://designcps.com/

References

www.designcps.com 33

1. N. Navet N., L. Fejoz L., L. Havet , S. Altmeyer, “Lean Model-Driven Development
through Model-Interpretation: the CPAL design flow”, Embedded Real-Time Software
and Systems (ERTS 2016), October 2015.

2. A. Brown, “An Introduction to Model Driven Architecture – Part1: MDA and today’s
systems”, IBM technical library, 2004.

3. T. Trew, “Creating Embedded Platforms with MDA: Where's the Sweet Spot”, slides
presented at ECMDA-FA, 2009.

4. T. A. Henzinger, “Two challenges in embedded systems design: predictability and
robustness”, Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 366(1881):3727–3736, 2008.

5. M. Antoni, “Formal validation method and tools for computerized interlocking system”,
18th International Symposium on Formal Methods (FM 2012), Industry day, August 27-
31, 2012.

6. S. Altmeyer, N. Navet, “Towards a declarative modeling and execution framework for
real-time systems”, First IEEE Workshop on Declarative Programming for Real-Time and
Cyber-Physical Systems, December 2015.

7. J. Seyler, N. Navet, L. Fejoz, “Insights on the Configuration and Performances of
SOME/IP Service Discovery“, in SAE International Journal of Passenger Cars- Electronic
and Electrical Systems, 8(1), 124-129, 2015.

8. S. Lampke, S. Schliecker, D. Ziegenbein, A. Hamann, “Resource-Aware Control - Model-
Based Co-Engineering of Control Algorithms and Real-Time Systems”, in SAE
International Journal of Passenger Cars- Electronic and Electrical Systems ,8(1):106-114,
2015.

http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
http://hdl.handle.net/10993/22279
https://www.designcps.com/wp-content/uploads/DPRTCPS_2015.pdf
https://www.designcps.com/wp-content/uploads/DPRTCPS_2015.pdf
https://www.designcps.com/wp-content/uploads/DPRTCPS_2015.pdf
https://www.designcps.com/wp-content/uploads/DPRTCPS_2015.pdf

References Continued

www.designcps.com 34

9. J. Seyler, T. Streichert, M. Glaß, N. Navet, J. Teich, "Formal Analysis of the Startup Delay
of SOME/IP Service Discovery", Design, Automation and Test in Europe (DATE2015),
Grenoble, France, March 13-15, 2015.

10. L. Ciarletta, L. Fejoz, A. Guenard, N. Navet, "Development of a safe CPS component: the
hybrid parachute, a remote termination add-on improving safety of UAS", Embedded
Real-Time Software and Systems (ERTS 2016), Toulouse, France, January 27-29, 2016.

11. F. Boniol, V. Wiels, “The landing gear system case study”, pp1-18, Proc. ABZ 2014, 2014.
12. R. Henia, L. RIOUX, “Formal Methods for Timing Verification - The 2015 FMTV

Challenge”, 2014. https://waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf
13. S. Altmeyer, N. Navet, L. Fejoz, "Using CPAL to model and validate the timing behaviour

of embedded systems", 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), Lund, Sweden, July 7,
2015.

14. R. Davis, A. Thekkilakattil, O. Gettings, R. Dobrin, S. Punnekkat, “Quantifying the Exact
Sub-Optimality of Non-Preemptive Scheduling”, Real-Time Systems Symposium (RTSS),
2015.

15. M. Nasri, G. Fohler, “Non-Work-Conserving Scheduling of Non-Preemptive Hard Real-
Time Tasks Based on Fixed Priorities”, Real-Time Network and Systems (RTNS), 2015.

16. M. Stigge, P. Ekberg, N. Guan, W. Yi, “The digraph real-time task model,” 16th IEEE
Real-Time and Embedded Technology and Applications Symposium, 2011.

17. M. Grenier, N. Navet, "Fine Tuning MAC Level Protocols for Optimized Real-Time QoS",
IEEE Transactions on Industrial Informatics, special issue on Industrial Communication
Systems, vol 4, nº1, 2008.

http://www.realtimeatwork.com/wp-content/uploads/Date2015-SomeIP.pdf
http://www.realtimeatwork.com/wp-content/uploads/Date2015-SomeIP.pdf
http://www.realtimeatwork.com/wp-content/uploads/Date2015-SomeIP.pdf
http://www.realtimeatwork.com/wp-content/uploads/Date2015-SomeIP.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://www.designcps.com/wp-content/uploads/UAV-ERTSS-2016.pdf
https://waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf
https://waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf
https://waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf
https://waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf
https://waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250
http://hdl.handle.net/10993/21250

