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Amount of software is growing 
exponentially – what about 

productivity gains in software 
development  ?

Software has become the key to innovation

Software is disrupting complete 
industries

Every company has to learn to 
become a software company

Model-Driven Development  is certainly 
a powerful enabler but ..   

Programming environments still lack 

 the high-level concepts: embedded 
system specific language abstractions

 automation features ("state the what, 
not the how") that would make them 
more productive

Innovation increasingly relies on 
software 

[inspired from posts at http://www.theenterprisearchitect.eu/]



CPAL is an embedded systems specific language
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Model and program  

functional and non-functional concerns

Simulate

possibly embedded within external tools such as RTaW-Pegase™ and 
Matlab/Simulink ™

Execute 

bare metal or hosted by an OS - prototypes or real systems

A

C

B

A joint project of RealTime-at-Work and 
University of Luxembourg since 2012 
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5-steps of MBD
Matlab/Simulink

Scade CPAL

Figure from [2] and [3] 
Inspired from interpreter-based interlocking systems 

e.g.: RATP, SNCF [5], Westingshouse



Why a new programming language ?
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o General purpose languages do not offer the right abstractions for ES:

o Periodic activities and real-time scheduling

o Time measurements and manipulation

o Finite state machines

o High-level interfaces to I/Os

o etc

o Conceived to facilitate the writing of correct embedded code (incl. 
restrictions)

o “Write once, Run Anywhere” of Java does not guarantee anything about 
timing behaviour on different platforms

o Development environments are unnecessary complex and often expensive 

o Model interpretation brings benefits: monitoring at run-time, security, no 
distortion between model and code, WORA, etc. 

5

Both functional and 
non-functional concerns

Our view: major productivity and quality improvements still ahead 
of us through better programming languages and environments



A glance at the state-of-the-art

www.designcps.com 6

o With respect to synchronous languages ? 

o Less demanding programming model: syntax close to mainstream languages, 
multiple I/Os per execution

o No time-determinism but rather timing-predictability

o Not amenable yet to verification in the value domain

o Unlike pure Architecture Description languages like Giotto and 
Prelude, CPAL is also a programming language and an execution 
platform

o Same time-triggered execution model as Giotto

o Would benefit from rich data-flow language of Prelude

o A large number of related (many discontinued) languages since the 
mid-80s: Pearl, Real-Time Euclid,  C-extensions (real-time 
concurrent C, PRET-C, mbeddr), Labview RT module, RT and safety-
critical Java, SCCharts, Papyrus-RT, etc most are imperative (and 
not declarative like CPAL) in the non-functional domain



Outline
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Selected highlights of the language 

CPAL scheduling and task activation model

Processes are recurrent Finite State Machines

Timing-augmented design flow

Use-cases: automotive Ethernet simulation, Thales FMTV challenge, 
UAV programming

A

D

B

C

E
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A few highlights of the language

8



Hello, world
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Hello, world
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Aim: intuitive and 
productive

FSM embedded 
in the process
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Processes: recurring activities whose 

logic is described as Finite State Machine

11



Finite-state Machines to 

describe the logic of a process
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Boolean condition

Timed transition

Timed transition 
and condition

Code both in states 
and transitions

12



A process is periodically activated
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Execute first  a 
transition (if 
possible) then  
current state

 best responsiveness 
to external events

Execute transition code
Move to next state

A transition 
can be fired ?

Wait until period has elapsed

NoYes

Stay in current state

Execute state-specific code 

One “step” of execution
of the FSM

Execute common code 

Activation condition 
met or none ?

No Yes

13



Process introspection
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First time when the 
current and previous 
instances obtained 

the CPU

Introspection can serve to implement 
adaptive behaviours and detect 

abnormal events at run-time

14
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CPAL scheduling 

and task activation model 

15



CPAL’s 2 Execution Modes
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 Execution is as fast as possible 
(e.g. periods are not respected)

 Code executed in zero time –
except if stated otherwise with 
timing annotations

 CPAL interpreter is hosted by 
an OS

 No access to real I/Os

Simulation mode Real-Time mode

 Real-time execution
 Code (instructions, read/write 

I/Os) takes time to execute –
depends on the platform

 CPAL can be executed on bare 
hardware or hosted by an OS

DeploymentDevelopment

16

Overhead data on Freescale FRDM-K64F:
 max. activation jitter: 40us
 timer interrupt: 0.6us 
 context switch overhead: 2us



Vision behind CPAL
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Timing equivalence needed depends on the application, can be e.g. 
1) full determinism 2) order-preserving for observable events, or 

3) deadline constraints met

17

In CPAL current release, 
execution order of 

processes remains the 
same in simulation and 

in real-time mode



Simulating execution times
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Timing annotations can be derived by built-in monitoring 
facilities and are respected by the simulator



Process activation model
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offset period

Activation conditions (aka “guarded executions”) 
are for implementing functioning modes and 

executing event-triggered activities

19



CPAL scheduling model
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o The choice of non-preemptive scheduling:
– No context-switch + no cache related preemption delays (CRPD) 

on the WCET + less memory usage

– No shared resources, easier to validate, less timing variability  

– But .. reduced ability to meet tight deadline constraints

o Currently FIFO policy is available :
– Enforce event-order determinism

– Work-conserving unlike static cyclic scheduling

o Built-in support for WCET measurements at run-time

o Planed to support partitioned multi-processor 
scheduling



Declaring timing correctness: 
designer states the “what”, not the “how”,  

environment does the rest
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Requirements: deadline, 
frequency, jitters, data-flow 

(precedence, prod. rate), 
safety, etc   

Allocate the models to the processing units

“Scheduler synthesis”

A

B

Ideas discussed in [6], 
implementation ongoing
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Use-Cases

22



Simulation: Some/IP SD [8,9]
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SOME/IP SD: service discovery for automotive Ethernet  
Objective: find the right tradeoff between subscription 

latency  and  SOME/IP SD overhead 

Max analysis
4.005ms

Max simulation 
3.98ms

Subscription
latency

for a client 

 Simulation complementary to analysis 
 Models have been coupled with low-level simulator 
 Same models could be used to implement testbeds

UC#1



Developing CPS: 

a smart parachute for UAV [10]
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UAVs autopilots cannot be trusted –
minimal safety through a remote termination component

Partnership with Alérion company  

Termination upon  
loss of connection or 

pilot’s decision  

UC#2



Software architecture 
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On-board module

HW control

Communication

UI



Executable requirements
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 Actual max. latency depends on the ground speed target, the 
minimum acceptable altitude, the weight of the UAS and the 
characteristics of the parachute (opening time, lift, etc)



Model-based fault-injection
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Time for the parachute to deploy (in seconds) and satisfaction of 
requirement R4 versus network quality ratio [11]



Towards a timing augmented 

design flow
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vehicle display

CPAL 
controller

Driving 
scenarios

 Timing accurate simulation & delays injected in the simulation
 Execution on target is timing-equivalent to simulation

Ongoing research

UC#3



Thales FMTV challenge [12,13]
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Aerial video system to detect and track a moving
object, e.g. a vehicle on a roadway

Challenge timing analysis community

[From 12]

[From 12]

UC#4



FMTV challenge in CPAL [13]
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Functional 
architecture

for challenge 1

4 sub-challenges

o Low effort to model vs automata-based formalisms

o Model and graphical representation helped to highlight 
ambiguities

o Simulation helped to find errors in the analysis

o Simulation biased towards worst-case helped -> open 
problem

o None of the schedulability questions could be automated, 
e.g. “the minimum time distance between two  frames 
produced by the camera that will  not reach the display, for 
a buffer size  n = 3”

“Pen and paper”



Conclusion & ongoing work
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o CPAL: an interpreted language on a time-triggered execution engine -

imperative programming in the functional domain - declarative programming 

in the non-functional domain

o Positive feedback about CPAL through industrial use-cases and teaching

o Code generation feasible for higher performance - hook to native code too

o Objectives: timing equivalence between models in simulation and execution 

/ SILx for the execution engine

Envisioned use-cases for the execution engine: 

 UAV and robotics 

 Real-time IoT

 Adaptive and resilient CPS

CPAL is free to use for academics (research works and industrial projects), 
Extensions to the language and toolset are welcome
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Thank you for your attention!

Want to give it a try? Binaries, 
code examples and playground 

at https://designcps.com

https://designcps.com/
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